Determination of well interaction degree based on integrated approach combining methods of well performance retrospective analysis and geochemical survey

UDK: 622.276.1/.4
DOI: 10.24887/0028-2448-2022-1-64-69
Key words: geochemistry; isotopic composition of water; well control optimization; hydrogeology of oil fields; modeling of oil fields; retrospective analysis
Authors: M.S. Shipaeva (Kazan (Volga Region)Federal University, RF, Kazan), D.K. Nurgaliev (Kazan (Volga Region)Federal University, RF, Kazan), V.A. Sudakov (Kazan (Volga Region)Federal University, RF, Kazan), A.A. Shakirov (Geoindicator LLC, RF, Kazan), A.A. Lutfullin (Tatneft PJSC, RF, Almetyevsk), L.I. Minihairov (Tatneft PJSC, RF, Almetyevsk), L.A. Zinurov (Sofoil LLC, RF, Kazan)

When developing small oil deposits related to formations with different reservoir properties, the following issues are relevant: 1) determination of the direction of injected water flows during the implementation of reservoir pressure maintenance systems; 2) maintenance of a rational value of injected/developed fluid ratio. As a practical example of determination of the direction of fluid flows from injection wells, it is proposed to conduct integrated studies of the geochemical properties of the formation fluid and the study of the conductivity of the interwell space based on a retrospective analysis of bottomhole pressure and production rate measurements. An integrated approach allows to reduce the uncertainty that arise in other methods of studying of the interwell space and give a more detailed and accurate conclusion. The essence of the integrated technology lies in the sequential geochemical analysis of wellhead samples, analysis of injection, production and reservoir pressure data, display of the results in a geological and reservoir simulation model. The advantage of the proposed technology is the combination of the results of geochemical surveys and retrospective analysis, which are inexpensive and quick methods. This will allow to quickly improve existing geological and reservoir simulation models, identify areas of low certainty of geological structure and significantly reduce the risks of unsuccessful wellwork.

References

1. Shipaeva M.S., I Nuriev.A., Evseev N.V. et al., Improving efficiency of oil recovery and finding a source of watering in multi-zone deposits by geochemical methods of research (In Russ.), Georesursy, 2020, V. 22, no. 4, DOI: 10.18599/grs.2020.4.93-97

2. Khisamov R.S., Gatiyatullin N.S., Ibragimov R.L., Pokrovskiy V.A., Gidrogeologicheskie usloviya neftyanykh mestorozhdeniy Tatarstana (Hydrogeological conditions of oil deposits of Tatarstan), Kazan': Fen Publ., 2009, 254 p.

3. Alekseev F.A., Gottikh R.P., Saakov S.A., Sokolovskiy E.V., Radiokhimicheskie i izotopnye issledovaniya podzemnykh vod neftegazonosnykh oblastey SSSR (Radiochemical and isotopic studies of groundwater in oil and gas regions of the USSR), Moscow: Nedra Publ., 1975, 271 p.

4. Shishelova T.I., Tolstoy M.Yu., The current state of the science of water. Problems and prospects (In Russ.), Nauchnoe obozrenie. Referativnyy zhurnal, 2016, no. 4, pp. 61–80.

5. Shipaeva M., Nurgaliev D., Siraeva I. et al., Methodology for express definition of water inflow source in water-flooded wells operating multi-layer deposits by high-precision studies of water composition, Proceedings of 9th EAGE International Geological and Geophysical Conference, St. Petersburg, 2020, DOI: 10.3997/2214-4609.202053228.

6. Samtanova D.E., Comprehensive study of the chemical composition of the produced water of oil fields of the Republic of Kalmykia (In Russ.), Vestnik Sankt-Peterburgskogo universiteta. Fizika i khimiya, 2014, V. 1(59), no. 1, pp. 120–125.

7. Navrotskiy O.K., Dotsenko A.M., Loginova M.P., Brichikov N.G., Comparative hydrochemical analysis of oil and gas field deposit waters within the bounds of large geostuctural elements (In Russ.), Geologiya, geografiya i global'naya energiya, 2012, no. 4(47), pp. 36–44.

8. Leont'eva E.N., Changes in the chemical composition of produced water influenced by the development of oil fields in Verkhnekamskaya oil-bearing area (In Russ.), Perspektivy nauki, 2015, no. 2(65), pp. 7–10.

9. Osmond J.K, Kaufman M.J., Cowart J.B., Mixing volume calcu­lations sources and aging trends of Floriden aquifer water by uranium isotopic methods, Geochim. Cosmoch. – Acta, 1974, V.8, no. 7, pp. 1083–1100, DOI:10.1016/0016-7037(74)90006-4

10. Kireeva T.A., Gidrogeokhimiya (Hydrogeochemistry), Moscow: Publ. of MSU, 2016, 197 p.

11. Kremenetskiy M.I., Ipatov A.I., Gulyaev D.N., Informatsionnoe obespechenie i tekhnologii gidrodinamicheskogo modelirovaniya neftyanykh i gazovykh zalezhey (Information support and technologies of hydrodynamic modeling of oil and gas deposits), Moscow - Izhevsk: Publ. of Izhevsk Institute of Computer Research, 2011, 896 p.


Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .