Development of corporative Ice Management System for Arctic license blocks

UDK: 622.24.085:658.5
DOI: 10.24887/0028-2448-2017-11-48-51
Key words: ice management, towing, models, iceberg
Authors: K.A. Kornishin, P.A. Tarasov (Rosneft Oil Company, RF, Moscow), Ya.O. Efimov, T.E. Mamedov (Arctic Research Center JSC, RF, Moscow), Yu.P. Gudoshnikov, A.V. Chernov, I.V. Buzin, A.V. Nesterov (Arctic and Antarctic Research Institute, RF, Saint Petersburg)

Ice Management System (IMS) is aimed at reduction and prevention of technological, environmental, economic and other risks of ice formations impact at offshore hydrocarbon exploration, production and transportation facilities in the Arctic seas. One of the key elements of IMS is physical impact on icebergs with a vessel in order to change iceberg’s drift path. The "Iceberg Summer 2016" expedition, conducted by OJSC Oil Company Rosneft in cooperation with the Federal State Arctic and Antarctic R&D Institution and specialized "Arctic Research Centre" institution, in the Kara and Barents seas in September and October of 2016, dealt with comprehensive development of the above stated technology, including full-scale experiments of towing of arctic icebergs.

When preparing the expedition, a number of methodologies were addressed, such as assessment of ship suitability to tow icebergs, operating with a single vessel, design of the towing experiments, including the definition of list of parameters to be measured and choice of operation areas.

During the «Iceberg Summer 2016» expedition, accomplished on the "Captain Dranitsyn" icebreaker, 18 iceberg towing experiments were conducted. The experiments were carried out in a wide range of environmental conditions, including wind speed of above 20 m/s, waves of above 4 m, visibility of below 200 m, broken ice and iceberg pieces present in the sea area. The experiments were conducted with objects of various sizes: from ice blocks to an iceberg of weight above 1 million tons. Possibility for maneuvering with an iceberg, to tow a group of small icebergs simultaneously was demonstrated. Corresponding methods have been elaborated. Additionally, the "Kara-Summer-2016" expedition on the research vessel "Academician Tryoshnikov" conducted concurrent studies to match the morphometric parameters of icebergs with parameters of their drift, and to measure environmental variables such as wind, current speed and waving.

Within the processing of the experimental data, hydrodynamic characteristics of an iceberg were compared to results of 3D simulation. The approach for analysis of oscillations in the towing force has also been developed. The performed work resulted in development and verification of original technology for prevention of collisions between a drifting iceberg and offshore engineering facilities for the first time in Arctic.

References

1. http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/view/fulltext/?id=754dda8b-6c1c-4712-bdc8-a8844324ccaa

2. Buzin I.V., Mironov E.U., Sukhikh N.A., Pavlov V.A., Kornishin K.A., Efimov Ya.O., Investigation of drift of the ice features on the Russian Arctic Offshore with the help of automatic radio beacons based on the ARGOS satellite system (In Russ.), Nauchno-tekhnicheskiy vestnik OAO “NK “Rosneft'”, 2016, pp. 4–9

3. Wilcox D.C., Turbulence modeling for CFD, DCW Industries, Inc., 1994, 460 p.

4. Devnin S.I., Aerogidromekhanika plokhoobtekaemykh konstruktsiy (Aerohydromechanics of poorly streamlined structures), Leningrad: Sudostroenie Publ., 1983, 320 p.



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .