One of the urgent problems of oil-producing enterprises is the purification of oil from hydrogen sulfide and light mercaptans, which, having high toxicity and corrosive activity, create great environmental and technological problems. Increased attention to this issue is due to the need to comply with the technical regulations of the EAEU TR 045/2017 regulating the content of hydrogen sulfide and light mercaptans in commercial oil when being delivered to the system of trunk oil pipelines of Transneft PJSC.
The article presents a comparative assessment of the known methods of hydrogen sulfide removal in order to choose an economically feasible technological solution for the facilities of PJSC Udmurtneft named after V.I. Kudinov. Oil treatment plants at the fields of Udmurtneft PJSC allow deep dehydration and desalination of oil, vapor pressure reduction of, and water treatment. Commercial oil is pumped into the oil pipeline system of Transneft PJSC through commercial metering units of systems for measuring the quantity and quality of oil. Currently, at oil treatment plants, the content of hydrogen sulfide and light mercaptans in commercial oil does not meet the requirements of TR EAEU 045/2017. Methods that have proven themselves at other oil and gas producing enterprises, such as separation, blow-off, “soft steam”, oxidative method, and the neutralization of hydrogen sulfide with chemical reagents, are analyzed. The conclusion is made that the methods of separation and blow-off technology are inappropriate to apply at the objects under consideration. As a result of the economic evaluation of the remaining methods, it was found that the most beneficial for all objects is the oxidative method. The hydrogen sulfide neutralization with chemical reagents, the effectiveness of which has been confirmed in the conditions of the objects under study, is recommended as a fallback scenario.
References
1. Fot K.S., Kolevatov A.N., Fakhrieva G.V., Petrova O.N., Review of methods for purification of marketable oil from hydrogen sulfide (In Russ.), Neft'.Gaz.Novatsii, 2019, no. 5, pp. 32–37.
2. Fot K.S., Novikova N.V., Buldakova N.S. et al., Hydrogen sulfide converter selection for objects of Udmurtneft JSC within preparation for introduction of TR EEU 045/2017 (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2020, no. 2, pp. 68–73, DOI: https://doi.org/10.24887/0028-2448-2020-2-68-73
3. Shatalov A.N., Shipilov D.D., Sakhabutdinov R.Z., Garifullin R.M. et al., Osobennosti tekhnologiy ochistki nefti ot serovodoroda na ob"ektakh NGDU “Elkhovneft'” (Features of technologies for cleaning oil from hydrogen sulfide at the facilities of Elkhovneft), Proceedings of TatNIPIneft' / Tatneft', 2011, V. 79, pp. 279–286.
4. Sakhabutdinov R.Z., Anufriev A.A., Shatalov A.N., Shipilov D.D., Improvement of hydrogen sulfide stripping physical methods (In Russ.), Ekspozitsiya Neft' Gaz, 2017, no. 3, pp. 39–41.
5. Solov'ev V.V., Morgunova D.N., Optimization of hydrogen sulfide stripping process by example of upgrading of Aktash sulfurous crude oil treatment plant (In Russ.), Neftyanaya provintsiya, 2017, no. 3, pp. 133–140.
6. Ibragimov N.G., Sakhabutdinov R.Z., Shatalov A.N. et al., Povyshenie effektivnosti desorbtsionnoy ochistki nefti ot serovodoroda (Increasing the efficiency of desorption treatment of oil from hydrogen sulphide), Proceedings of TatNIPIneft' / Tatneft', 2016, V. 84, pp. 166–173.
7. Gilaev G.G., Rtishchev A.V., Vdovenko A.A. et al., New conceptual approach towards h2s neutralization physical methods (In Russ.), Neft'.Gaz.Novatsii, 2017, no. 10, pp. 78–82.
8. Shipilov D.D., Shatalov A.N., Sakhabutdinov R.Z., Garifullin R.M., Differentsirovannyy podkhod k resheniyu problemy ochistki nefti ot serovodoroda na ob"ektakh OAO “Tatneft'” (A differentiated approach to solving the problem of hydrogen sulfide stripping on Tatneft’s facilities), Proceedings of TatNIPIneft' / Tatneft', 2012, V. 80, pp. 284–292.
9. Shipilov D.D., Shatalov A.N., Solov'ev V.V., Ibragimov N.G., Povyshenie effektivnosti desorbtsionnoy ochistki nefti ot serovodoroda na ustanovke podgotovki nefti NGDU “Bavlyneft'” (Improving the efficiency of desorption purification of oil from hydrogen sulfide at the oil treatment unit of NGDU Bavlyneft), Proceedings of TatNIPIneft' / Tatneft', 2018, V. 86, pp. 271–277.
10. Grigoryan L.G., Devyatkin D.P., Agrafenin S.I., Development of "soft steaming" process to treat light and sour crude oil (In Russ.), Neft'.Gaz.Novatsii, 2018, no. 9, pp. 74–77.
11. Vil'danov A.F., Aslyamov I.R., Khrushcheva I.K. et al., Oxidational-catalytic DMC-1MA process for deep treatment of heavy oils for hydrogen sulfide and mercaptans (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2012, no. 11, pp. 138–140.
12. Shatalov A.N., Garifullin R.M., Shipilov D.D., Sakhabutdinov R.Z. et al., Opyt ispol'zovaniya khimicheskikh metodov ochistki nefti ot serovodoroda na ob"ektakh OAO “Tatneft'” (Experience in using chemical methods for hydrogen sulfide stripping on Tatneft’s facilities), Proceedings of TatNIPIneft' / Tatneft', 2009, pp. 371–385