Experience of horizontal injection wells application in the development of terrigenous reservoir of RN-Yuganskneftegas LLC fields

UDK: 622.276, 620.193
DOI: 10.24887/0028-2448-2023-1-23-27
Key words: horizontal water injection wells, waterflooding, self-induced hydraulic fracturing, horizontal wells injectivity profiles
Authors: M.V. Suleymanova (RN-BashNIPIneft LLC, RF, Ufa), A.S. Trofimchuk (RN-BashNIPIneft LLC, RF, Ufa), G.I. Khabibullin (RN-BashNIPIneft LLC, RF, Ufa)

This paper presents an integrated experience in injection horizontal wells (HW) using with a varied well completion type, including multi-stage hydraulic fracturing. The historical path of development systems: from multi-row with directional wells (DW) and low rigidity of the reservoir pressure maintenance system to oriented dispersed waterflood systems with HW are considered. Based on the data of hydrodynamic studies of wells, Hall plots, well interference analysis, well tests results, the development self-induced hydraulic fracturing in HW was proved. In the low-permeability reservoirs the achievement of the planned injectivity is determined by the presence of a self-induced hydraulic fracture, which is initiated when the bottomhole pressure exceeds the formation fracture pressure. It is noted that with an increase reservoir pressure, a decrease in the self-induced hydraulic fracturing effect and degradation of the fracture is observed. To assess the horizontal wells effectiveness, a comparison was made of the starting parameters and dynamics of the injection HW vs. DW. The results of studies of HW injectivity profiles are analyzed, potential reasons for the uneven injection distribution across hydraulic fracturing ports are considered. The areas of injection HW applicability in different geological and physical conditions, that is, when the injection HW allows a complete replacement of two DW to achieve the planned injectivity and injection ratio, as well as the sweep efficiency in linear development systems, have been identified. Recommendations on the further research program for horizontal injection wells and on improving the efficiency of this waterflooding method were given. The study is important due to the constant increasing technological complexity of well completion and the HW increasing share.

References

1. Davletbaev A.Ya., Baykov V.A., Ozkan E. et al., Multi-layer steady-state injection test with higher bottomhole pressure than the formation fracturing pressure (In Russ.), SPE 136199-RU, 2010, https://doi.org/10.2118/136199-RU

2. Baykov V.A., Zhdanov R.M., Mullagaliev T.I., Usmanov T.S., Selecting the optimal system design for the fields with low-permeability reservoirs (In Russ.), Neftegazovoe delo, 2011, no. 1, pp. 84–98.

3. Baykov V.A., Davletbaev A.Ya., Usmanov T.S., Stepanova Z.Yu., Special well tests to fractured water injection wells (In Russ.), Neftegazovoe delo, 2011, no. 1, pp. 65-75, URL: http://ogbus.ru/files/ogbus/authors/Baikov/Baikov_1.pdf

4. Syundyukov A.V., Khabibullin G.I., Trofimchuk A.S., Sagitov D.K., Metodika podderzhaniya optimal'noy geometrii tekhnogennoy treshchiny putem regulirovaniya rezhima nagnetaniya v nizkopronitsaemykh kollektorakh (A method for maintaining the optimal geometry of induced fracture by regulating the injection mode on low-permeability reservoirs), Ufa: Publ. of USPTU, Ufa.

5. Patent RU 2547848 C2, Method of development of low-permeable oil deposits, Inventors: Baykov V.A., Kolonskikh A.V., Evseev O.V., Afanas'ev I.S.

6. Wolcott D., Applied waterflood field development, Publ. of Schlumberger, 2001, 142 p.

7.
Eaton B.A., Graphical method predicting pressure worldwide, World Oil, 1972, V.
185, pp. 51–56.


Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .