Experience of teaching the discipline «Aerospace methods in Oil and Gas Geology» at Gubkin Russian State University of Oil and Gas

UDK: 378:550.814
DOI: 10.24887/0028-2448-2022-5-39-43
Key words: remote methods, oil and gas potential, geological decoding, aerospace methods, forecasting of oil and gas potential of the subsurface
Authors: L.V. Miloserdova (Gubkin University, RF, Moscow), K.I. Dаntsova (Gubkin University, RF, Moscow)

The present time is a turning point in teaching due to the active introduction of computer technologies in education. This is especially true for teaching geological decoding as a result of the availability of satellite images and methods of their processing. With the advent of satellite images, it turned out that previously unknown formations are widely developed on Earth – lineaments and ring structures, the nature of which in some cases has not yet been deciphered. The article reflects the long-term experience of teaching the discipline Aerospace Methods in Oil and Gas Geology in the fifth year at Gubkin Russian State University of Oil and Gas. The principles and techniques of teaching this discipline in oil and gas geology are highlighted for the first time. The content (traditional course – lectures and practical tasks related to their topics) and methods of teaching the discipline, as well as control measures are described. Practical tasks are grouped into four blocks. The work is carried out using open access resources GoogleEarth, QGIS. Course design is possible in the course. The article discusses the possibilities of distance teaching of the discipline. Special attention is paid to the role of the hydro grid pattern in the decryption of structures. It is concluded that the use of images in oil and gas geology helps not only to solve highly specialized tasks, but also allows you to see and solve geological, predictive and prospecting problems in their unity and the relationship of parts. Recommendations on the educational literature for this discipline are given. The universality of space images is discussed (depending on the research objectives various data can be extracted from them).

References

1. Petrusevich M.N., Aerometody pri geologicheskikh issledovaniyakh (Aerial methods in geological research), Moscow: Gostekhgeolizdat Publ., 1961, 407 p.

2. Miller V.C., Miller C.F., Photogeology, McGraw-Hill Book Company, Inc. New York, 1961, 248 p.

3. Petrusevich M.N. Prakticheskoe rukovodstvo po aerofotogeologii (A practical guide to aerial photography), Moscow: Publ. of MSU, 1976, 190 p.

4. Kats Ya.G., Ryabukhin A.G., Trofimov D.M., Kosmicheskie metody v geologii (Space methods in geology), Moscow: Publ. of MSU, 1976, 246 p.

5. Korchuganova N.I., Korsakov A.K., Distantsionnye metody geologicheskogo kartirovaniya (Remote methods of geological mapping), Moscow: KDU Publ., 2009, 288 p.

6. Kats Ya.G., Tevelev A.V., Poletaev V.I., Osnovy kosmicheskoy geologii (Fundamentals of space geology), Moscow: Nedra Publ., 1988, 236 p.


Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .