Features of high-strength steels use for overground crossings of oil and gas pipelines through water barriers, taking into account the calculation for resistance to progressive collapse

UDK: 614.8:622.692.4.07(211)
DOI: 10.24887/0028-2448-2022-4-100-104
Key words: high-strength steels, resistance to progressive collapse, crossing water obstacles, static and dynamic formulation of the problem
Authors: U.S. Poverenniy (NK Rosneft-NTC LLC, RF, Krasnodar), A.A. Kiktev (NK Rosneft-NTC LLC, RF, Krasnodar), A.D. Dubrov (NK Rosneft-NTC LLC, RF, Krasnodar), D.A. Zelenin (NK Rosneft-NTC LLC, RF, Krasnodar), D.Yu. Shestakov (NK Rosneft-NTC LLC, RF, Krasnodar), A.A. Popov (NK Rosneft-NTC LLC, RF, Krasnodar), A.A. Poverennaya (Kuban State University, RF, Krasnodar), E.V. Shestakova (Kuban State Technological University, RF, Krasnodar), A.V. Kolesnikov (Moscow State University Of Civil Engineering (National Research University), RF, Moscow), А.А. Greb (Rosneft Oil Company, RF, Moscow)

The article presents examples of the installation of overground crossings of oil and gas pipelines through water barriers using steels C345 / C355, C 390, C440. For crossings, as for objects with an increased level of responsibility, requirements are presented on the need to ensure resistance to progressive collapse. Compliance analysis of high-strength steels according to GOST 27772-2021 "Rolled products for building steel structures" to the requirements of SP 16.13330.2017 "Steel structures" in terms of chemical composition, carbon equivalent, impact strength. The requirements for steels for construction areas with operating temperatures from -45 to minus -55˚C are given. The issue of weldability of high-strength steels between themselves and with high-strength steels is considered. On the example of the crossing of an oil pipeline with a diameter of DN500 and a length of 90 m, an analysis was made of the feasibility of using high-strength steels. The use of C390 steel makes it possible to reduce the cost and metal consumption of solutions by more than 25% compared to C345 steels. In the future, when using C440 steels for shaped profiles, it will be possible to reduce the metal consumption of similar transitions by more than 40% due to an increase in the strength of the steel. The analysis of calculations for resistance to progressive collapse is carried out. The calculation prerequisites for solving problems of dynamic formulation in accordance with SP 385.1325800.2018, SP 296.1325800.2017 are presented. When calculating the transition to progressive collapse, design situations with the exclusion of the support brace and the exclusion of the element of the lower chord are taken into account. To improve the quality of solutions, calculations were performed in 3 different software products, which showed sufficient convergence of the results. The calculation in the software packages MicroFe-StaDiCon 2021, STARK ES 2021, LIRA 10.12 was performed in a nonlinear formulation by a static method. Calculations in SP LIRA 10.12 were additionally performed in the dynamic formulation of the problem.

References

1. Drobot D.Yu., Vozmozhnye tekhnologii rascheta na progressiruyushchee obrushenie (Possible technologies for calculating progressive collapse), Moscow: Izdatel'skie resheniya Publ., 2020, 264 p.

2. Certificate of official registration of the computer program no. 2020618505 “Svaya-SAPR Pro”, Authors: Medyanik S.S., Kesiyan G.A, Dubrov A.D., Zenkov E.V., Zagumennikova A.V., Poverennyy Yu.S., Fedoseenko V.O., Gilev N.G.

3. Certificate of official registration of the computer program no. 2021616474 “TsMLO”, Authors:  Dubrov A.D., Poverennyy Yu.S., Gilev N.G., Zenkov E.V., Yargunina A.O.



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .