Hydrogen generation from hydrocarbons sub-terrain: efficient hydrogen production with zero carbon footprint

UDK: 622.276:546.11
DOI: 10.24887/0028-2448-2022-2-22-26
Key words: in-situ hydrogen generation and production, greenhouse gas geological sequestration
Authors: M.L. Surguchev (Hydrogen Source AS, Norway, Oslo)

Hydrogen is one of the most important components of the clean energy system of the future. At present, the production of environmentally "pure" hydrogen is associated with high energy costs in the implementation of the water electrolysis process and steam methane reforming process due to the separation, capture and storing of carbon dioxide. Hydrogen Source AS has developed a technology for Hydrogen Generation from Hydrocarbons Sub-terrain (HGHS) and hydrogen production without emitting greenhouse gases into the atmosphere. The HGHS process can be also applied in low permeable reservoirs, noncommercial hydrocarbon fields; in the depleted gas and gas-oil fields at the late production stage for conversion of remaining non-economic reserves to hydrogen for its commercial production; in coal fields containing methane.

This article presents the results of an assessment of HGHS application in a field with residual, non-commercial hydrocarbon reserves. In experiments carried out in high-temperature reactors at reservoir pressures, the degree of conversion of hydrocarbons to hydrogen was up to 70%. In the HGHS process in addition to steam reforming of hydrocarbons also a catalytic cracking of hydrocarbons is taking place. A numerical chemical-thermal model of the process, history matched by experimental data, was used in reservoir simulations and for assessing economic efficiency of HGHS. Application of HGHS in a depleted field becomes profitable and achieves a payback with the conversion to hydrogen of more than 5% of the remaining hydrocarbons in place. The estimates show that the cost of hydrogen produced in the HGHS process is several times lower than in he currently widely used steam methane reforming or water electrolysis.

References

1. Hydrogen Council Path to hydrogen competitiveness. A cost perspective, URL: https://hydrogencouncil.com/wp-content/uploads/2020/01/Path-to-Hydrogen-Competitiveness_Full-Study-1...

2. Surguchev M.L., Obzor segmentatsii rynka vodoroda po gruppam potentsial'nykh klientov na osnove klyuchevykh oblastey primeneniya (Overview of hydrogen market segmentation by potential customer groups based on key applications), Edinburgh: Heriot-Watt University,2016.

3. Surguchev L.M., Poluchenie vodoroda iz uglevodorodov v plaste, nakoplenie i podzemnoe khranenie vodoroda dlya ego kommercheskogo ispol'zovaniya (Production of hydrogen from hydrocarbons in the reservoir, accumulation and underground storage of hydrogen for its commercial use), Proceedings of III International scientific symposium “Teoriya i praktika primenenis metodov uvelicheniya nefteotdachi plastov” (Theory and practice of application of enhanced oil recovery methods), Moscow, 20-21 September 2011, Moscow: Publ. of VNIIneft', 2011.

4. Surguchev L., In-situ hydrogen generation from hydrocarbons, Proceedings of Offshore Heavy Oil Conference, London, 24-25 November 2011.

5. Berenblyum R., Østhus A., Stokka S., Surguchev L., Air Injection chapter in JCR-7 Monograph “North Sea Chalk”: edited by Skjæveland S., Siqveland O.K., University of Stavanger, 2019.

6. Druganova E., Surguchev L., Ibatullin R., Air Injection at Mordovo-Karmalskoye field: Simulation and IOR evaluation, SPE-136020-MS, 2010, https://doi.org/10.2118/136020-MS

7. Berenblyum R., Surguchev L., Production of H2 generated from hydrocarbons in-situ with CO2 disposal, Proceedings of European Hydrogen Energy Conference (EHEC), Seville, Spain, 2014, DOI:10.3997/2214-4609.20140132

8. Surguchev L., Berenblyum R., Surguchev M., Shift to hydrogen: 100% recovery from depleted and abandoned gas fields, Proceedings of IOR 2017 - 19th European Symposium on IOR, Stavanger, Norway, DOI:10.3997/2214-4609.201700245

9. Berenblyum R.A., Surguchev M.L., Generatsiya voloroda iz uglevodorodov v plastovykh usloviyakh mestorozhdeniy: effektivnost' dobychi vodoroda (Generation of hydrogen from hydrocarbons in reservoir conditions of fields: efficiency of hydrogen production), Proceedings of III International Scientific and Practical Conference “Integrirovannoe nauchnoe soprovozhdenie neftegazovykh aktivov: opyt, innovatsii, perspektivy” (Integrated scientific support of oil and gas assets: experience, innovations, prospects), dedicated to the 30th anniversary of LUKOIL PJSC, Perm, 20-21 October 2021.

10. Sleptsov D.I., Generatsiya vodoroda v plastovykh usloviyakh: effektivnost' dobychi vodoroda s nulevym uglerodnym sledom (Hydrogen generation in reservoir conditions: the efficiency of hydrogen production with a zero carbon footprint) Natsional'nyy neftegazovyy forum. – 2021.


Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .