The article provides a review of the results achieved at Rosneft Oil Company upon implementation of a system aimed to improve the operational quality of artificial lift wells in response to negative impact of complicating factors. The key objective of this project is to create a systemized full-cycle process which comprises forecasting, feasibility studies, planning and quality control of well operations, including also at the development designing stage. An important work area is to reduce total unit costs related to taking equipment protection measures and increasing the mean time between failures. The project has six main implementation stages. It provides the principles of creating a unified system across all company subsidiaries to rank the well stock under the “complicating factor’ criteria with a description of principles to categorize complications by their type and severity. It also offers the criteria for listing available technologies which are efficient for certain complications factoring in the complication type and category and the well operation mode. The article gives a brief review of assessing and improving the quality of decisions for selection of measures to protect downhole pumping equipment from complicating factors based on the Feasibility Study Model. It also analyzes organization of the business planning cycle and implementation of the strategy aimed to improve operational efficiency of artificial lift wells in response to negative impact of complicating factors for each subsidiary of the Rosneft Group. The article presents the sequence of activities to forecast the risk of complication factor occurrence at company’s Greenfield assets. It states the importance of the automation and digitization stage in the work to address complications during operations of artificial lift wells using the platform of the corporate information system Artificial Lift Wells. The article demonstrates the efficiency of the implemented system and describes the results achieved.
References
1. Drozdov A.N., Tekhnologiya i tekhnika dobychi nefti pogruzhnymi nasosami v oslozhnennykh usloviyakh (Technology and engineering of oil production using submersible pumps under complicated conditions), Moscow: MAKS press Publ., 2008, 312 p.
2. Topolʹnikov A.S., Prediction of complications in the operation of mechanized wells using the RosPump program (In Russ.), Inzhenernaya praktika, 2014, no. 2, pp. 48–53.
3. Kosilov D.A., Improving the efficiency of the management of the mechanical well stock in the current macroeconomic conditions (In Russ.), Inzhenernaya praktika, 2015, no. 12, pp. 8–11.
4. Ivanovskiy V.N., New conceptual approach to protection of submersible equipment from scales (In Russ.), Territoriya neftegaz, 2013, no. 9, pp. 12–16.
5. Ivanovskiy V.N., Impact upon the running time of electrically driven centrifugal feed pump units and the pump''s rotation speed in the course of operation of wells which are complicated by a mechanical impurity outflow (In Russ.), Territoriya neftegaz, 2017, no. 9, pp. 58–64.
6. Kosilov, D.A. Mironov, D.V. Naumov I.V., Mekhfond corporate system: achieved results, medium-term and long-term perspectives (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2018, no. 11, pp. 70–73.
7. Certificate of registration of a computer program no. 2019617219, Programma informatsionnoy sistemy upravleniya mekhanizirovannym fondom skvazhin (Mechanized well stock management information system program).