Universal flow improver for crude oil

UDK: 622.692.4.052.002
DOI: 10.24887/0028-2448-2020-6-94-97
Key words: supramolecules, weak interactions, сoulomb and Van der Waals forces, self-assembly structures, reversible and irreversible destruction, pour point depressant, Drag Reducing Agent
Authors: G.V. Nesyn (The Pipeline Transport Institute LLC, RF, Moscow), F.S. Zverev (The Pipeline Transport Institute LLC, RF, Moscow), M.I. Valiev (The Pipeline Transport Institute LLC, RF, Moscow)

Research in supramolecular science makes a great progress last years and will involve probably in its orbit the chemistry of crude oil additives. The main feature of supramolecules is ability to self-assembly after mechanical destruction because of weak bonds between the supramolecular monomer units. Coulomb and Van der Waals interactions as well as hydrogen bonds can form labile compounds that are able to change themselves under applied forces and then recreate their structure. That is the main difference from strong covalent bonds whose cleavage is irreversible. So, supramolecules are self-repairable structures and this property is attractive for developing the Drag Reducing Agents (DRAs) which can recover their activity after high shear stress of centrifugal pump. Conventional DRAs cannot. They radically lose drag reducing activity while passing through main line pump. For another thing weak bonds may dissociate under ambient conditions and that is why supramolecular solution may contain particles of different length this very moment. Furthermore, low molecular weight particles may act as pour point depressant (PPD) while particles of high molecular weight may act as DRA. In most preferable case the supramolecules will be the universal additive for crude oil. But in far as PPDs are consumed while conglomerating with paraffin the supramolecular concentration should be the value of about several hundred parts-per-million.

References

1. Ezrahi S., Tuval E., Aserin A., Properties, main applications and perspectives of worm micelles, Advances in Colloid and Interface Science, 2006, December 21, no. 128–130, pp. 77–102, DOI: 10.1016/j.cis.2006.11.017

2. Patent US6774094B2, Drag reduction using fatty acids, Inventors: Jovancicevic V., Bartrip K.

3. Gu X., Zhang F., Li Y. et al., Investigation of cationic surfactants as clean flow improvers for crude oil and a mechanism study, Journal of Petroleum Science and Engineering, 2018, V. 164, pp. 87–90.

4. Darabi A., Soleymanzadeh A., Evaluation of drag reduction by cationic surfactant in crude oil, URL: https://www.nisoc.ir/_DouranPortal/Documents/2_20100120_123001.pdf

5. Nesyn G.V., Valiev M.I., Gareev M.M., Degradation-resistant agents reducing hydrodynamic resistance of hydrocarbon liquids (In Russ.), Nauka i tehnologii truboprovodnogo transporta nefti i nefteproduktov = Science & Technologies: Oil and Oil Products Pipeline Transportation, 2019, V. 9, no. 6, pp. 652–659.

6. Zakin J.L., Zhang Y., Ge W., Drag reduction by surfactant giant micelles, In: Giant micelles: Properties and applications: edited by Zana R. , Kaler E.W., Boca Raton (Fl): CRC Press, 2007, pp. 473–492.

7. Patent WO2004050805A2, Aluminum carboxylate drag reducers for hydrocarbon emulsions, Inventors: Jovancicevic V., Campbelle S., Ramachandran S.., Hammonds P., Weghorn S.

8. Al-Sabagh A.M. et al., Synthesis and characterization of nanohybrid of poly(octadecylacrylates derivatives)/montmorillonite as pour point depressants and flow improver for waxy crude oil, Journal of Applied Polymer Science, 2019, V. 136, no. 17, DOI: 10.1002/app.47333.

9. Sabadini E., Francisco K. R., Bouteiller L., Bis-urea-based supramolecular polymer: the first self-assembled drag reducer for hydrocarbon solvents, Langmuir, 2010, V. 26, no. 3, pp. 1482–1486.

10. Malik S., Mashelkar R.A., Hydrogen bonding mediated shear stable clusters as drag reducers, Chemical Engineering Science, 1995, V. 50(1), pp. 105–116, DOI: 10.1016/0009-2509(94)00125-B

11. Bekturov E.A., Troynye polimernye sistemy v rastvorakh (Triple polymer systems in solutions): edited by Zhubanov B.A., Alma-Ata: Nauka Publ., 1975, 252 p.  



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .