The article presents results of Temir area study. This area is isolated carbonate platforms type, so sedimentation is controlled by tectonic and eustatic sea level fluctuations. The structure of the Visean-Bashkirian complex of the Temir carbonate platform is considered on the bases of principles of sequential stratigraphic analysis. Seismic-stratigraphic interpretation of regional seismic lines and 3D seimic data including deep drilling data of five wells allowed to determine boundaries and internal structure features of the platform. The section of Visean-Bashkirian deposits is represented by carbonate rocks of various facial zones of an isolated platform – bioherms and their margin parts (boundstones, granestones), as well as adjacent lagoon and deep-sea areas (waxstones, packstones, mudstones). The general part of carbonate sedimentation and the formation of high-amplitude bioherms occurs during the period of high sea-level standing (HST), bioherms are formed in the side zones of the platform on the windward side, and small patch-reefs can appear in the central part. To sedimentation modelling, where zones of reef, slope and deep-water facies, as well as zones of high reservoir quality confined to the boundaries of complexes (SB), fundamental principles of carbonate sedimentation were used. A map of the deposits thicknesses between the reflecting horizons Р2 and Р2-1 has been compiled to estimate the total thickness of the Carboniferous carbonate deposits of the Temir area. Final facies maps, where the forecast of the development of the Visean-Bashkirian bioherms is given, were constructed based on studies conducted as part of this work.
References
1. Orenburgskiy tektonicheskiy uzel: geologicheskoe stroenie i neftegazonosnost' (Orenburg tectonic knot: geological structure and oil and gas potential): edited by Volozh Yu.A., Parasyn V.S., Moscow: Nauchnyy mir Publ., 2013, 261 p.
2. Sim L.A., Sabirov I.A., Gordeev N.A., The latest stress state of Mangyshlak and its possible impact on the distribution of hydrocarbon deposits (In Russ.), Ekspozitsiya Neft' Gaz = Exposition Oil & Gas, 2019, no. 4(71), pp. 22–27, DOI: 10.24411/2076-6785-2019-10040.
3. Abilkhasimov Kh.B., Osobennosti formirovaniya prirodnykh rezervuarov paleozoyskikh otlozheniy Prikaspiyskoy vpadiny i otsenka perspektiv ikh neftegazonosnosti (Features of the formation of natural reservoirs of the Paleozoic sediments of the Caspian basin and assessment of the prospects of their oil and gas potential), Moscow: Publ. of Academy of Natural Sciences, 2016, 244 p.
4. Azhgaliev D.K., Peculiarities of formation of carbonated strata in the Upper Paleozoic Era in the East of the Pre-Caspian Basin in view of the prospects of oil-and-gas-bearing capacity (In Russ.), Territoriya Neftegaz, 2017, no. 7–8, pp. 22–36.
5. Gur'yanov A.V., Geneticheskie tipy i vtorichnye preobrazovaniya karbonatnykh porod kak osnova dlya prognozirovaniya ikh kollektorskikh svoystv (Genetic types and secondary transformations of carbonate rocks as a basis for predicting their reservoir properties): thesis of candidate of geological and mineralogical science, 1990.