The article considers the issues of fertility and silvicultural properties of soils, on which the sludge storage pits were previously located. The research was carried out in 2017-2019 on the territory of the LUKOIL-Volgogradneftepererabotka disposal facilities. The generally accepted methods of the polluted soils vegetative properties and the woody plants growth studying were used. Phytotoxicity and soil fertility were studied in a field experiment with the disposal facilities area recultivation.
Six species of trees and bushes were used in plantations: black chokeberry (Arónia melanocárpa), canker rose (Rósa canína), Emerson's thorn (Crataegus submollis), sea buckthorn (Hippóphae rhamnoídes), wild black cherry (Prúnus virginiána), tamarix brachiate (Tamarix ramosissima). The site is located in the zone of light chestnut soils. It was revealed that the soils, on which the sludge storage pits were previously located, have a slightly alkaline reaction pH = 8.2-8.6. They fix highly soluble salts into complexes, which reduces their content from 0.187-0.596 g/l to 0.109-0.286 g/l. Soils form a hydrophobic structure, which impairs the moisture entry into the root layer. This reduces the fertility of contaminated soils. Phytotoxicity of the tested medicinal and fruit plants was not detected. It was established that woody plants adapt well to growth in the recultivated area. In the third year after planting, flowering and fruiting are noted at tamarix, chokeberry and rose. Wild black cherry and rose form root stalks. The woody plants adaptability on the technologically disturbed lands cluster analysis allowed to divide the studied species into two categories. The first category includes plants that are more adapted to the complex forest conditions: tamarix, rose and sea buckthorn. The second category includes Emerson's thorn, wild black cherry and black chokeberry, which are less adaptive to the technogenic burden.
References
1. Voronina V.P., Biryukov A.Yu., Vedilin R.V., Inyakin A.V., Estimation of antrogenetive transformed soils influence on crops growth and bioefficiency (In Russ.), Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: Nauka i vysshee professional'noe obrazovanie, 2016, no. 2 (42), pp. 49–56.
2. Kirpo N.I., Loboyko V.F., Ekologiya pochv v meliorativnom zemledelii Nizhnego Povolzh'ya (teoriya i praktika) (Ecology of soils in land reclamation agriculture of the Lower Volga region (theory and practice)), Volgograd: IPK "Niva" VGSKhA Publ., 2010, 119 p.
3. Litvinov E.A., Vdovenko A.V., Kalmykov S.I., Berry-fruit and decor prospective introduction in conditions of North Caspian Area (In Russ.), Vestnik Saratovskogo gosagrouniversiteta im. N.I. Vavilova, 2008, no. 5, pp. 34–36.
4. Koval' V.T., Kalinin T.Yu., Alborov I.I., New calculation methods for production reserves and environmental efficiency in large industrial enterprises (In Russ.), Gornyy informatsionno-analiticheskiy byulleten', 1997, no. 2, pp. 136–137.
5. Dmitriev E.A., Soil and soil-like bodies (In Russ.), Pochvovedenie = Eurasian Soil Science, 1996, no. 3, pp. 310–319.
6. Trofimov S.Ya., On the dynamics of organic matter in soils (In Russ.), Pochvovedenie, 1997, no. 9, pp. 1181–1186.
7. Semenyutina A.V., Podkovyrov I.Yu., Tsembelev M.A., Estimation cluster method of woody plants successful introduction by generic complexes (In Russ.) Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: Nauka i vysshee professional'noe obrazovanie, 2015, no. 1(37), pp. 56–61.
8. Semenyutina A.V., Podkovyrov I.Y., Huzhahmetova A.S., Semenyutina V.A., Podkovyrova G.V., Mathematical justification of the selection of woody plants biodiversity in the reconstruction of objects of gardening, International Journal of Pure and Applied Mathematics, 2016, V. 110, no. 2, pp. 361–368.