Laboratory investigations of the heating of high-viscosity oil in pipelines by a high frequency electromagnetic field

UDK: 537.868.3
DOI: 10.24887/0028-2448-2019-2-82-85
Key words: pipeline, heavy oil, high-frequency electromagnetic field, heating
Authors: L.A. Kovaleva (Bashkir State University, RF, Ufa), R.R. Zinnatullin (Bashkir State University, RF, Ufa), M.D. Valeev (Bashkir State University, RF, Ufa), R.Z. Minnigalimov (Ufa State Petroleum Technological University, RF, Ufa), R.H. Fassahov (Tatoilgas JSC, RF, Almetyevsk)

The article considers the possibility of applying a high-frequency frequency electromagnetic field for heating heavy oil in pipelines. A laboratory test bench for studying the heating of heavy oils and asphalt-resin-paraffin deposits by a high frequency electromagnetic field is described. It includes three versions of a high frequency resonator with different ratios of the diameters of the outer and inner tubes. The degree of influence of the electromagnetic field on oil dispersed media is determined mainly by their dielectric parameters. Therefore, dielectric properties of oil were studied in a wide range of frequencies and temperatures. The results of experimental studies on the heating of high-viscosity oil and asphalt-resin-paraffin deposits by a high frequency electromagnetic field in static and dynamic regimes are presented. It is shown that the most intensive heating of oil is achieved when a ratio of the diameters of the outer and inner pipes is 1.7. The temperature dynamics of the oil samples under study and the heating rates of different oil samples were determined. It is shown that the higher the values of the dielectric parameters for oil at the working frequency of the generator, the higher the heating intensity. It is found that with increasing temperature for some samples of oil, the heating intensity decreases, which is explained by the decrease in the dielectric parameters of these oils with increasing temperature. Studies of oil heating with a similar resistive heating method have been carried out. The results showing the effectiveness of the radio frequency electromagnetic method of heating oil in a pipeline are compared with the resistive method in a dynamic mode. Based on the studies, a commercial radio frequency electromagnetic method for heating highly viscous oils in pipelines has been developed. The calculations of the power of an industrial generator based on the results of laboratory studies are given.

References

1. Ivanova L.V., Burov E.A., Koshelev V.N., Asphaltene-resin-paraffin deposits in the processes of oil production, transportation and storage (In Russ.), Neftegazovoe delo = The electronic scientific journal Oil and Gas Business , 2011, URL: http://ogbus.ru/authors/IvanovaLV/IvanovaLV_1.pdf

2. Evdokimov I.N., Problemy nesovmestimosti neftey pri ikh smeshenii (Oil incompatibility problems during oil mixing), Moscow: Publ. of Gubkin Russian University of Oil and Gas, 2008, 93 p.

3. Vaynshteyn L.A., Elektromagnitnye volny (Electromagnetic waves), Moscow: AST Publ., 1988, 440 p.

4. Balakirev V.A., Sotnikov G.V., Tkach Yu.V., Yatsenko T.Yu., HF method of eliminating paraffin plugs in the equipment of oil wells and oil pipelines (In Russ.), Elektromagnitnye yavleniya, 1998, V. 1, no. 4, pp. 552-560.

5. Balakirev V.A. et al., Elimination of paraffin plugs in the equipment of oil wells and oil pipelines with high-frequency electromagnetic radiation (In Russ.), Elektromagnitnye yavleniya, 2001, V. 2, no. 3, pp. 380-399.

6. Dunia R., Edgar T.F., Study of heavy crude oil flows in pipelines with electromagnetic heaters, Energy & Fuels, 2012, V. 26, no. 7, pp. 4426–4437.

7. Domnin I.F., Rezinkina M.M., Design study of thermal processes in the high-frequency heating of petroleum products (In Russ.), Vіsnik Natsіonal'nogo tekhnіchnogo unіversitetu KhPІ. Ser.: Radіofіzika ta іonosfera, 2013, V. 33, pp. 51–55.

8. Kovaleva L.A., Zinnatullin R.R., Mullayanov A.I., Shrubkovskiy I.I., Experimental studies of heating rheologically complex fluids with electromagnetic field (In Russ.), Teplofizika vysokikh temperatur = High Temperature, 2016, V. 54, no. 4, pp. 645-647.

9. Puschner H., Heating with microwaves. Fundamentals, components and circuittechnique, New York: Springer-Verlag, 1966.

10. Kovaleva L.A., Zinnatullin R.R., The determination of temperature-frequency and dielectric characteristics of oils (In Russ.), Teplofizika vysokikh temperatur = High Temperature, 2006, V. 44, no. 6, pp. 954-956.

11. Sheu E.Y., De Tar M.M., Storm D.A., Dielectric properties of asphaltene solutions, Fuel, 1994, V. 73, no. 1, pp. 45–50.

12. Evdokimov I.N., Losev A.P., Electrical conductivity and dielectric properties of solid asphaltenes, Energy & Fuels, 2010, V. 24, no. 7, pp. 3959–3969.

13. Brandt A.A., Issledovanie dielektrikov na sverkhvysokikh chastotakh (Investigation of dielectrics at microwave frequencies), Moscow: Fizmatgiz Publ., 1963, 404 p.

14. Shirman Ya.D., Radiovolny i ob"emnye rezonatory (Radio waves and cavity resonators), Moscow: Svyaz'izdat Publ., 1957, 379 p.

15. Patent no. 2589741 RF, Method and device for high-viscosity oil heating in pipelines of high-frequency electromagnetic fields, Inventors: Kovaleva L.A., Zinnatullin R.R., Blagochinnov V.N., Mullayanov A.I., Shrubkovskiy I.I.

The article considers the possibility of applying a high-frequency frequency electromagnetic field for heating heavy oil in pipelines. A laboratory test bench for studying the heating of heavy oils and asphalt-resin-paraffin deposits by a high frequency electromagnetic field is described. It includes three versions of a high frequency resonator with different ratios of the diameters of the outer and inner tubes. The degree of influence of the electromagnetic field on oil dispersed media is determined mainly by their dielectric parameters. Therefore, dielectric properties of oil were studied in a wide range of frequencies and temperatures. The results of experimental studies on the heating of high-viscosity oil and asphalt-resin-paraffin deposits by a high frequency electromagnetic field in static and dynamic regimes are presented. It is shown that the most intensive heating of oil is achieved when a ratio of the diameters of the outer and inner pipes is 1.7. The temperature dynamics of the oil samples under study and the heating rates of different oil samples were determined. It is shown that the higher the values of the dielectric parameters for oil at the working frequency of the generator, the higher the heating intensity. It is found that with increasing temperature for some samples of oil, the heating intensity decreases, which is explained by the decrease in the dielectric parameters of these oils with increasing temperature. Studies of oil heating with a similar resistive heating method have been carried out. The results showing the effectiveness of the radio frequency electromagnetic method of heating oil in a pipeline are compared with the resistive method in a dynamic mode. Based on the studies, a commercial radio frequency electromagnetic method for heating highly viscous oils in pipelines has been developed. The calculations of the power of an industrial generator based on the results of laboratory studies are given.

References

1. Ivanova L.V., Burov E.A., Koshelev V.N., Asphaltene-resin-paraffin deposits in the processes of oil production, transportation and storage (In Russ.), Neftegazovoe delo = The electronic scientific journal Oil and Gas Business , 2011, URL: http://ogbus.ru/authors/IvanovaLV/IvanovaLV_1.pdf

2. Evdokimov I.N., Problemy nesovmestimosti neftey pri ikh smeshenii (Oil incompatibility problems during oil mixing), Moscow: Publ. of Gubkin Russian University of Oil and Gas, 2008, 93 p.

3. Vaynshteyn L.A., Elektromagnitnye volny (Electromagnetic waves), Moscow: AST Publ., 1988, 440 p.

4. Balakirev V.A., Sotnikov G.V., Tkach Yu.V., Yatsenko T.Yu., HF method of eliminating paraffin plugs in the equipment of oil wells and oil pipelines (In Russ.), Elektromagnitnye yavleniya, 1998, V. 1, no. 4, pp. 552-560.

5. Balakirev V.A. et al., Elimination of paraffin plugs in the equipment of oil wells and oil pipelines with high-frequency electromagnetic radiation (In Russ.), Elektromagnitnye yavleniya, 2001, V. 2, no. 3, pp. 380-399.

6. Dunia R., Edgar T.F., Study of heavy crude oil flows in pipelines with electromagnetic heaters, Energy & Fuels, 2012, V. 26, no. 7, pp. 4426–4437.

7. Domnin I.F., Rezinkina M.M., Design study of thermal processes in the high-frequency heating of petroleum products (In Russ.), Vіsnik Natsіonal'nogo tekhnіchnogo unіversitetu KhPІ. Ser.: Radіofіzika ta іonosfera, 2013, V. 33, pp. 51–55.

8. Kovaleva L.A., Zinnatullin R.R., Mullayanov A.I., Shrubkovskiy I.I., Experimental studies of heating rheologically complex fluids with electromagnetic field (In Russ.), Teplofizika vysokikh temperatur = High Temperature, 2016, V. 54, no. 4, pp. 645-647.

9. Puschner H., Heating with microwaves. Fundamentals, components and circuittechnique, New York: Springer-Verlag, 1966.

10. Kovaleva L.A., Zinnatullin R.R., The determination of temperature-frequency and dielectric characteristics of oils (In Russ.), Teplofizika vysokikh temperatur = High Temperature, 2006, V. 44, no. 6, pp. 954-956.

11. Sheu E.Y., De Tar M.M., Storm D.A., Dielectric properties of asphaltene solutions, Fuel, 1994, V. 73, no. 1, pp. 45–50.

12. Evdokimov I.N., Losev A.P., Electrical conductivity and dielectric properties of solid asphaltenes, Energy & Fuels, 2010, V. 24, no. 7, pp. 3959–3969.

13. Brandt A.A., Issledovanie dielektrikov na sverkhvysokikh chastotakh (Investigation of dielectrics at microwave frequencies), Moscow: Fizmatgiz Publ., 1963, 404 p.

14. Shirman Ya.D., Radiovolny i ob"emnye rezonatory (Radio waves and cavity resonators), Moscow: Svyaz'izdat Publ., 1957, 379 p.

15. Patent no. 2589741 RF, Method and device for high-viscosity oil heating in pipelines of high-frequency electromagnetic fields, Inventors: Kovaleva L.A., Zinnatullin R.R., Blagochinnov V.N., Mullayanov A.I., Shrubkovskiy I.I.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

21.10.2020
21.10.2020
19.10.2020