Digital economy of oil industry

UDK: 658.012.011.56:622.276
DOI: 10.24887/0028-2448-2019-1-100-103
Key words: digital economy, oil and gas production, system analysis, uncertainty, digitalization, information technology
Authors: G.I. Shmal (Union of Oil & Gas Producers of Russia, RF, Moscow), L.I. Grigoryev (Gubkin University, RF, Moscow), B.Ya. Kershenbaum (Gubkin University, RF, Moscow), D.G. Leonov (Gubkin University, RF, Moscow)

The development of information technologies provided practical implementation of classical automation and control ideas and created prerequisites for the new economy concept with digital data representation, stimulating the creation of global information space as main production factor.

The article discusses system problems of digital economy in oil industry concept in accordance with the industry distinctive features. Evolution of system analysis enriched with the ideas of self-organizing systems, principles of the development and openness enabled qualitatively new approaches for the handling of uncertainty specific to the oil and gas production. Evolution nature of oil and gas generation, some specific uncertainties of oil industry objects and processes as well as main simulation approaches are considered.

Evolutional processes as the development basis have exerted strong influence upon the system analysis in technological processes management as well as the solution of multicriterion problems of economic-organizing management. The set of criteria itself evolved from mostly economic to risk oriented. The increase of the management decisions complexity caused the development of the technological processes management: from basic automate control systems to the complex systems provided full decision support at all levels of management hierarchy, from technological processes to the economic-organizing decisions accompanied with the increase of information technologies application.

The new automation stage of the production based on the principles of digital economy requires the integration of all available means and knowledge. The key role in the successful development of this project should be played by qualitatively new organization structures provided interdisciplinary approach and usage of scientific potential.

References

1. Weiner N., Cybernetics: Or control and communication in the animal and the machine, MIT Press, 1961.

2. Glushkov V.M., Osnovy bezbumazhnoy informatiki (The basics of paperless computer science), Moscow: Nauka Publ., 1982, 552 p.

3. The program “Tsifrovaya ehkonomika Rossiyskoy Federatsii” (Digital Economy of the Russian Federation), approved by the order of the Government of the Russian Federation dated July 28, 2017 No. 1632-p

4. Mirzadzhanzade A.Kh., Khasanov M.M., Bakhtizin R.N., Modelirovanie protsessov neftegazodobychi. Nelineynost’, neravnovesnost’, neopredelennost’ (Modelling of oil and gas production processes. Nonlinearity, disequilibrium, uncertainty), Moscow-Izhevsk: Publ. of Institute of Computer Science, 2004, 368 p.

5. Grigorʹev L.I., K teorii avtomatizirovannogo dispetcherskogo upravleniya (To the theory of automated dispatch control), Proceedings of Gubkin Russian State University of Oil and Gas, 2012, no. 3, pp. 126–130.

6. Abukova L.A., Dmitrievskiy A.N., Eremin N.A., Digital modernization of Russian oil and gas complex (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2017, no. 10, pp. 54–58.

7. Fiziko-khimicheskie svoystva neftyanykh dispersnykh sistem i neftegazovye tekhnologii (Physico-chemical properties of oil dispersed systems and oil and gas technology): edited by Safieva R.Z., Syunyaev R.Z., Moscow – Izhevsk: Publ. of Institute of Computer Science, 2007, 580 p.

8. Grigorʹev L.I., Kuzʹmitskiy I.F., Sanzharov V.V., Sistemnyy i sinergeticheskiy analiz upravleniya nepreryvnymi tekhnologicheskimi protsessami v neshtatnykh situatsiyakh (System and synergistic analysis of the management of continuous technological processes in emergency situations), Proceedings of Trudy VSPU-2014, 2014, pp. 4285–4296.

9. Grigorʹev L.I., Kershenbaum V.YA., Kostogryzov A.I., Sistemnye osnovy upravleniya konkurentosposobnostʹyu v neftegazovom komplekse (System bases of competitiveness management in the oil and gas complex), Moscow: Publ. of NING, 2010, 374 p.

10. Zachman J.A., A framework for information systems architecture, IBM Systems Journal, 1999, V. 38,, no. 2-3, pp. 454–470.

The development of information technologies provided practical implementation of classical automation and control ideas and created prerequisites for the new economy concept with digital data representation, stimulating the creation of global information space as main production factor.

The article discusses system problems of digital economy in oil industry concept in accordance with the industry distinctive features. Evolution of system analysis enriched with the ideas of self-organizing systems, principles of the development and openness enabled qualitatively new approaches for the handling of uncertainty specific to the oil and gas production. Evolution nature of oil and gas generation, some specific uncertainties of oil industry objects and processes as well as main simulation approaches are considered.

Evolutional processes as the development basis have exerted strong influence upon the system analysis in technological processes management as well as the solution of multicriterion problems of economic-organizing management. The set of criteria itself evolved from mostly economic to risk oriented. The increase of the management decisions complexity caused the development of the technological processes management: from basic automate control systems to the complex systems provided full decision support at all levels of management hierarchy, from technological processes to the economic-organizing decisions accompanied with the increase of information technologies application.

The new automation stage of the production based on the principles of digital economy requires the integration of all available means and knowledge. The key role in the successful development of this project should be played by qualitatively new organization structures provided interdisciplinary approach and usage of scientific potential.

References

1. Weiner N., Cybernetics: Or control and communication in the animal and the machine, MIT Press, 1961.

2. Glushkov V.M., Osnovy bezbumazhnoy informatiki (The basics of paperless computer science), Moscow: Nauka Publ., 1982, 552 p.

3. The program “Tsifrovaya ehkonomika Rossiyskoy Federatsii” (Digital Economy of the Russian Federation), approved by the order of the Government of the Russian Federation dated July 28, 2017 No. 1632-p

4. Mirzadzhanzade A.Kh., Khasanov M.M., Bakhtizin R.N., Modelirovanie protsessov neftegazodobychi. Nelineynost’, neravnovesnost’, neopredelennost’ (Modelling of oil and gas production processes. Nonlinearity, disequilibrium, uncertainty), Moscow-Izhevsk: Publ. of Institute of Computer Science, 2004, 368 p.

5. Grigorʹev L.I., K teorii avtomatizirovannogo dispetcherskogo upravleniya (To the theory of automated dispatch control), Proceedings of Gubkin Russian State University of Oil and Gas, 2012, no. 3, pp. 126–130.

6. Abukova L.A., Dmitrievskiy A.N., Eremin N.A., Digital modernization of Russian oil and gas complex (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2017, no. 10, pp. 54–58.

7. Fiziko-khimicheskie svoystva neftyanykh dispersnykh sistem i neftegazovye tekhnologii (Physico-chemical properties of oil dispersed systems and oil and gas technology): edited by Safieva R.Z., Syunyaev R.Z., Moscow – Izhevsk: Publ. of Institute of Computer Science, 2007, 580 p.

8. Grigorʹev L.I., Kuzʹmitskiy I.F., Sanzharov V.V., Sistemnyy i sinergeticheskiy analiz upravleniya nepreryvnymi tekhnologicheskimi protsessami v neshtatnykh situatsiyakh (System and synergistic analysis of the management of continuous technological processes in emergency situations), Proceedings of Trudy VSPU-2014, 2014, pp. 4285–4296.

9. Grigorʹev L.I., Kershenbaum V.YA., Kostogryzov A.I., Sistemnye osnovy upravleniya konkurentosposobnostʹyu v neftegazovom komplekse (System bases of competitiveness management in the oil and gas complex), Moscow: Publ. of NING, 2010, 374 p.

10. Zachman J.A., A framework for information systems architecture, IBM Systems Journal, 1999, V. 38,, no. 2-3, pp. 454–470.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

12.05.2021
29.04.2021
19.04.2021
Конкурс на соискание молодежной премии имени академика И.М. Губкина