Modelling of the well path control process in the telemetry system

UDK: 622.24.001.57
DOI: 10.24887/0028-2448-2017-12-105-107
Key words: telemetric system, drilling control, inclinometry, microprocessor unit
Authors: N.I. Krysin, S.N. Krivoshchekov, M.S. Turbakov, A.V. Kychkin, E.V. Kozhevnikov (Perm National Research Polytechnic University, RF, Perm)

The article describes the process of operation of the telemetric control system of the trajectory of the trunk during drilling of directional and horizontal wells with a rotary controlled system. An algorithm for automated correction of the direction for drilling a well along the project profile has been developed. In the process of rotary drilling with the rotation of the entire column, the navigation block of the telemetry system, built on the basis of inclinometers and accelerometers, determines changes in the current position relative to the initial position in the three axes and, together with other drilling parameters, transfers this information to the control unit. The control unit, consisting of an electronic board with a processor unit, controllers and flash memory, detects a deviation from the design position at the current depth, then calculates the necessary path correction and transmits signals to the microprocessor control unit of the wedge drive motor controllers, which ensures the wedge drive supply voltage to the motors for the required time. Based on the studies carried out, a system of equations for calculating the position of the bit is constructed, taking into account the changes in the trajectory of the well due to the movement of the bit from the current point to the design point and a model for controlling the deflection of the bit in the spatial coordinates.

The performance evaluation of the control unit was performed at the booth on the basis of the actual drilling data for a sub-horizontal well in the territory of the north of the Perm Region in 2015 using a rotary controlled system. As a result of the research, it was confirmed that the well can be drilled in the project profile in automatic mode when using a rotary controlled system in conjunction with the developed telemetry system.

 References

1. Xue Qilong, Wang Ruihe, Sun Feng, Huang Leilei, Han Laiju, Continuous measurement-while-drilling utilizing strap-down multi-model surveying system, IEEE Trans. Instrum. Meas., 2014, V. 63, pp. 650–657.

2. Krivoshchekov S.N., Melekhin A.A., Turbakov M.S. et al., Development of a telemetric system for monitoring downhole parameters in the course of wells construction (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2017, no. 9, pp. 86–88.

3. Ust'kachkintsev E.N., Increase productivity of construction in sidetrack of Verkhnekamsk potassium-magnesium salts field (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2012, no. 5, pp. 39–46.

4. Nikolaev N.I., Leusheva E.L., Theoretical and experimental investigation of hard rock drilling efficiency (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2015, no. 15, pp. 38–47.

5. Zakirov A.Ya., The results of the first tests of the Russian rotary-steerable systems (In Russ.), PROneft'. Nauchno-tekhnicheskiy zhurnal “Gazprom nefti”, 2016, no. 2, pp. 43–47, URL: http://ntc.gazprom-neft.ru/research-and-development/proneft/776/13452/

6. Conti P.F., Controlled horizontal drilling, SPE 18708-MS, 1989.

7. Kychkin A.V., Volodin V.D., Sharonov A.A. et al., The synthesis of the hardware and software system structure for remote monitoring and control of the wellbore trajectory while drilling by rotary steerable system (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2016, no. 11, pp. 128–132.

8. Jian Kang, BoXiong Wang, Zhong Xiang Hu et al., Study of Drill Measuring System Based on MEMS accelerative and magnetoresistive sensor, Electronic Measurement & Instruments, ICEMI 09, Beijing, China, 2009.

9. Kychkin A.V., Artemov S.A., Vlasov V.A., Structural synthesis of integrated control and information management system of mobile platform (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniya = PNRPU Bulletin. Electrotechnics, Informational Technologies, Control Systems, 2013, no. 7, pp. 83–95.

10. Kychkin A.V., Dadenkov D.A., Bilalov A.B., Automated information system for half-sized modeling of electric drives static load (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniya = PNRPU Bulletin. Electrotechnics, Informational Technologies, Control Systems, 2013, no. 8, pp. 73–83.

11. Baldenko D.F., Vervekin A.V., Plotnikov V.M., Ways to further improvement of well drilling by downhole drilling motors (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2016, no. 19, pp. 165-174.

12. Kuz'mina T.A., Mironov A.D., Experience in the development of objects unproductive using technology multihole drilling (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2012, no. 3, pp. 89–93.



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .