The article is devoted to the study of the process of oil flow from the matrix to the fractures. The coefficient of intraporous overflow is a measure of the heterogeneity of the system of fractures – matrix pores and the amount of fluid flowing from the matrix into the fractures and from fractures into matrix. This parameter is an important factor that determines the production of oil reserves, and can take different values in a fairly wide range. The coefficient of intraporous overflow depends on a number of factors, such as the size and permeability of blocks, the permeability of fractures. In order to determine the flow coefficient, materials of hydrodynamic well studies processed in accordance with the Warren – Root model were used. Schemes for changing the coefficient of flow over the area of one of the Tournaisian-Famennian deposits in the initial period of its development and after 5 years of its operation are constructed. A joint analysis of the results of calculations and the field material made it possible to establish that the maximum volumes of oil were obtained from the sections of the deposit with the maximum values of the flow coefficients. Coefficient of overflow should be considered the most important indicator characterizing the features of the structure and development of reserves from the deposits with the presence of zones of distribution of the fractured reservoir. It has been established that the decrease in bottomhole pressures entails a significant decrease in the coefficient of overflow, and, as a consequence, worsens the productive characteristics of the well. The possible deterioration of the process of mass exchange between the matrix and fractures must be taken into account when justifying the permissible downhole pressures. To ensure maximum flow volumes from the matrix to the fracture zones, it is necessary to introduce a reservoir pressure maintenance system in the early stages of exploiting deposits that have a natural fracture.
References
1. Cherepanov S.S., Integrated research of carbonate reservoir racturing by Warren – Root method using seismic facies analysis (evidence from tournaisian-famennian deposit of Ozernoe field) (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2015, no. 14, pp. 6–12.
2. Galkin V.I., Ponomareva I.N., Repina V.A., Study of oil recovery from reservoirs of different void types with use of multidimensional statistical analysis (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2016, V. 15, no. 19, pp. 145–154.
3. Cherepanov S.S., Ponomareva I.N., Erofeev A.A., Galkin S.V., Determination of fractured rock parameters based on a comprehensive analysis of the data core studies, hydrodynamic and geophysical well tests (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2014, no. 2, pp. 94–96.
4. Putilov I.S., Razrabotka tekhnologiy kompleksnogo izucheniya geologicheskogo stroeniya i razmeshcheniya mestorozhdeniy nefti i gaza (Development of technologies for a comprehensive study of the geological structure and location of oil and gas fields), Perm’: Publ. of Perm National Research Polytechnic University, 2014, 285 p.
5. Latysheva M.V., Ustinova Yu.V., Kashevarova V.V., Potekhin D.V., Improvement of hydrodynamic simulation using advanced techniques of hydrodynamic well data processing (exemplified by Ozernoe field) (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2015, no. 14, pp. 73–80.