The article presents the results of numerical modeling of the working process in a general-purpose chamber for petroleum gases combustion. In the proposed mathematical model, the working process equations are considered from mass, energy, and momentum conservation standpoint. We used k-ε turbulent model. The results of numerical simulation were obtained using ANSYS Fluent. The reliability of the results of numerical simulation depends on the boundary conditions set. Process parameters at the inlet depend on the type and arrangement of fuel and oxidizer injectors. ‘Outflow’ boundary condition is used at the chamber outlet boundary. Flow parameters fields and radial profiles in characteristic cross-sections along the combustion chamber are present. A detailed analysis of the rates, temperatures, oxidizer-to-fuel ratio and concentration of SO2 in combustion and dilution zones is given. Values of oxidizer-to-fuel ratio are determined with the use of additional program developed. The SO2 concentration was determined using the ANSYS Fluent flow parameters and preliminary thermochemical and thermodynamic calculations. The obtained results of numerical simulation made it possible to abandon the previously accepted concept of the distribution of secondary air along the length of the combustion chamber. The simulation results showed that by selecting the secondary air supply parameters it is possible to arrange the flame front in the central region of the chamber both along its length and along the radius. This reduces thermal load on combustion chamber structural elements and concentration of sulfur-containing compounds in the near-wall region, hence, increases the resource of its operation.
References
1. Bachev N.L., Betinskaya O.A., Bul'bovich R.V., Computational modeling of the working process in the combustion chamber for casing-head gas recovery (In Russ.), Inzhenerno-fizicheskiy zhurnal = Journal of Engineering Physics and Thermophysics, 2016, V. 89, no. 1, pp. 212–220.
2. Betinskaya O.A., Bachev N.L., Bul'bovich R.V., Three-dimensional model study of the working process in the combustion chamber for utilization of petroleum gas (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2015, no. 2, pp. 96–99.
3. Bachev N.L., Betinskaya O.A., Bul'bovich R.V., Stationary three-dimensional model of fuel gase burning (In Russ.), Vestnik PNIPU. Aerokosmicheskaya tekhnika = PNRPU Aerospace Engineering Bulletin, 2015, V. 41, pp. 103–0119.
4. Zueva O.A., Bachev N.L., Bul'bovich R.V., Kleshchevnikov A.M., Development of a gas turbine plant for associated petroleum gas utilization gathering electrical and thermal energy at marginal fields (In Russ.), Neftyanoe khozyaystvo= Oil Industry, 2014, no. 1, pp. 98–101.
5. Lebedinskiy E.V., Kalmykov G.P., Mosolov S.V., Rabochie protsessy v zhidkostnom raketnom dvigatele i ikh modelirovanie (Work processes in a liquid rocket engine and their modeling): edited by Koroteev A.S., NMoscow: Mashinostroenie Publ., 2008, 512 p.
6. Bachev N.L., Matyunin O.O., Kozlov A.A., Bacheva N.Yu., Working process with reburning of generating gas at supercritical parameters in the chamber of combustion of rocket engine on liquid fuel numerical modeling (In Russ.), Vestnik Moskovskogo aviatsionnogo instituta, 2011, V. 18, no. 2, pp. 108–116.
7. Rukovodstvo pol'zovatelya. Programmnyy kompleks ANSYS Fluent 15.0 2013 (User guide. ANSYS Fluent software package 15.0 2013), Moscow: Tesis Publ., 2013, 511 p.