Characteristics and influence factors for oil displacement efficiency determination in low-permeability and complex reservoir simulation

UDK: 622.276.1/.4
DOI: 10.24887/0028-2448-2017-7-50-53
Key words: oil displacement efficiency, sweep efficiency, oil recovery factor, dead oil, low-permeability and complex reservoirs, similarity criteria
Authors: B.C. Gabsia (VNIIneft JSC, RF, Moscow)

Oil displacement efficiency, as an integral part of the recovery factor, is a very important input in reservoir modeling and simulation. Reliable field production prediction results largely depend, not only on simulation efficiency, but also on the quality of the input data obtained from laboratory tests. This article focuses on enhanced laboratory methods for determining oil displacement efficiency. For more adequate test results, different ways of improving upon conventional laboratory flow tests on low-permeability and complex reservoirs core samples are presented.

Analyses of the results of oil displacement efficiency obtained from flow tests on plugs of both sandstone and carbonate cores alike are presented. It is shown from the results that the characteristics of two phase fluid flow (oil and water) in the porous media of the above reservoir types are different. Further researches on core samples show that these distinctions in flow characteristics are more common in low-permeability reservoir rocks than in those of higher flow properties.

A number of factors influencing the results of displacement experiments (like core length and size, pore structure, core texture, core saturation methods used, oil samples, etc) are also considered. Some approaches designed to enhance core flow tests and produce more reliable input data for reservoir modeling are discussed.

References

1. Krylov A.P., Sostoyanie teoreticheskikh rabot po proektirovaniyu razrabotki neftyanykh mestorozhdeniy i zadachi po uluchsheniyu etikh rabot (The state of theoretical work on the design of oil fields and the tasks to improve these works), Collected papers “Opyt razrabotki neftyanykh mestorozhdeniy i zadachi po uluchsheniyu etikh rabot” (Experience in the development of oil fields and tasks to improve these works), Moscow: Gostoptekhizdast Publ., 1957, pp. 116–139.

2. Mironov T.P., Orlov V.S., Nefteotdacha neodnorodnykh plastov pri zavodnenii (Oil recovery of heterogeneous reservoirs in waterflooding), Moscow: Nedra Publ., 1977, 272 p.

3. Zakirov I.S., Korpusov V.I., Correction of structure of the formula for calculation of oil-recovery ratio (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2006, no. 1, pp. 66–68.

4. Lebedinets N.P., Yusupov P.M., Ekspertnyy analiz koeffitsientov nefteizvlecheniya (Expert analysis of oil recovery factors), Collected papers ”Teoriya i praktika primeneniya metodov uvelicheniya nefteotdachi plastov” (Theory and practice of applying enhanced oil recovery methods), Proceedings of III International Scientific Symposium, Moscow, 2011, pp. 133–137.

5. Shchelkachev V.N., On the confirmation of a simplified formula that estimates the effect of the well density grid on oil recovery (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 1984, no. 1, pp. 30–32.

6. Zakirov S.N. et al., Novye predstavleniya o koeffitsientakh vytesneniya, okhvata i izvlecheniya nefti (New concepts of displacement efficiency, coverage and oil recovery), Collected papers ”Teoriya i praktika primeneniya metodov uvelicheniya nefteotdachi plastov” (Theory and practice of applying enhanced oil recovery methods), Proceedings of III International Scientific Symposium, Moscow, 2011, pp. 117–122.

7. Mandrik I.E., Nauchno-metodicheskie osnovy optimizatsii tekhnologicheskogo protsessa povysheniya nefteotdachi plastov (Scientific and methodological foundations for optimization of the technological process of enhanced oil recovery): thesis of doctor of technical science, Moscow, 2008.

8. Adamski M., Kremesec V., Randall J., Charbeneau R.J., Residual saturation: What is it? How is it measured? How should we use it?, URL: https://clu-in.org/conf/itrc/iuLNAPL/030513_residual.pdf

9. Surguchev M.L., Gorbunov A.T., Zabrodin D.P., Metody izvlecheniya ostatochnoy nefti (Methods of the residual oil extraction), Moscow: Nedra Publ., 1991, 308 p.

10. Metodicheskie rekomendatsii po podschetu zapasov nefti i gaza ob’emnym metodom. Otsenka kharaktera nasyshchennosti po dannym GIS (Guidelines for the calculation of reserves of oil and gas by volumetric method. Assessment of the nature of saturation according to well logging): edited by Petersil’e V.I., Poroskun V.I., Yatsenko G.G., Moscow –Tver: Publ. of VNIGNI, 2003. 261 p.

11. Efros D.A., Onoprienko V.P., Modelirovanie lineynogo vytesneniya nefti vodoy (Modeling of linear displacement of oil by water), Collected papers “Voprosy podzemnoy gidrodinamiki i razrabotki neftyanykh mestorozhdeniy” (Issues of underground hydrodynamics and development of oil deposits), Proceedings of VNII, 1958, V. XII, pp. 331–360.

12. Gabsiya B.K., Otsenka primeneniya obraztsov polnorazmernogo kerna dlya opredeleniya koeffitsientov vytesneniya i otnositel'noy fazovoy pronitsaemosti porod-kollektorov neftyanykh i gazovykh mestorozhdeniy (Evaluation of using the full-size core samples for determination of displacement coefficients and relative phase permeability of reservoir rocks of oil and gas fields), Proceedings of VNIIneft', 2016, V. 154, pp. 109–120.

13. Gabsiya B.K., Nikitina I.N., Distinctive features of hydrocarbon phase modeling in flow experiments (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2016, no. 2, pp. 44–46.

14. Gabsiya B.K., Evaluation of the effect of initial water saturation on relative permeability curves and production parameters of oil and gas fields (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2016, no. 3, pp. 82–85.



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .