Removal of acidic components of associated petroleum gas by pertraction on microporous membranes

UDK: 622.276.1/.4
Key words: associated petroleum gas, pertraction, microporous membranes, carbon dioxide, hydrogen sulfide, mercaptans
Authors: D.I. Petukhov, A.A. Poyarkov, E.A. Chernova, A.V. Lukashin, A.A. Eliseev (Lomonosov Moscow State University, RF, Moscow), E.S. Pyatkov, V.N. Surtaev (Rosneft Oil Company PJSC, RF, Moscow)
In the current study the efficiency of utilization of microporous hollow-fiber membrane contactors made of polyvinylidenfluoride, polysulfone, polyethersulfone and polypropylene with hydrophobic and hydrophilic surfaces was analyzed for acidic components removal during pertraction process. An ultimate efficiency of CO2 capture of 0,23 nm3/(m2·h) was illustrated for polypropylene hollow-fibers, having a packing density of 3200 m2/m3, which corresponds to a specific volumetric performance of acid gas removal up to 750 nm3/(m3·h). Polypropylene hollow-fiber membranes were used in the pertraction module of a pilot plant for associated petroleum gas conditioning. This module provides the purification of feed gas stream from carbon dioxide, hydrogen sulphide and mercaptans. Pilot plant consisting of pertraction module and capillary condensation module allows conditioning of the feed stream with a pressure of 0.6 MPa and a fluxex of 13.4 nm3/h to the requirements of STO Gazprom 089-2010. Proposed method allowed to reduce the content of carbon dioxide from 8,47 vol. % to 0.26 vol. % The total sulfur content in the purified gas was reduced below 0,4 mg/m3, while containing 0,2 vol. % H2S and 50 mg/m3 CH3SH in a feed stream. This allows utilization of the proposed technology for conditioning of associated petroleum and natural gas for piping in accordance with the requirements of STO Gazprom 089-2010.
References
1. Petukhov D.I., Lukashin A.V., Eliseev A.A. et al., Removing of heavy hydrocarbons
from associated petroleum gas using capillary condensation on microporous
membranes (In Russ.), Nauchno-tekhnicheskiy vestnik
OAO “NK“Rosneft'”, 2015, no. 4, pp. 27–31.
2. Pyatkov E.S., Surtaev V.N., Petukhov D.I. et al., Conditioning of associated
petroleum gas using capillary condensation technique with asymmetric microporous
anodic alumina membranes (In Russ.), Neftyanoe khozyaystvo =
Oil Industry, 2016, no. 5, pp. 82–85.
3. Petukhov D.I., Berekchiian M.V., Pyatkov E.S. et al., Experimental and theoretical
study of enhanced vapor transport through nanochannels of anodic
alumina membranes in a capillary condensation regime, J. Phys. Chem.,
2016, V. 120, no. 20, pp. 10982–10990.
4. Kohl A.L., Nielsen R., Gas purification (5th edition), Elsevier Science, 1997,
pp. 41–174.
5. Yu C.H., Huang C.H., Tan C.S., A review of CO2 capture by absorption and
adsorption, Aerosol and Air Quality Research, 2012, no. 12, pp. 745–769.
6. Scholes C.A., Stevens G.W., Kentish S.E., Membrane gas separation applications
in natural gas processing, Fuel, 2012, V. 96, pp. 15–28.
7. Kratochvil A.M., Koros W.J., Decarboxylation-Induced cross-linking of a
polyimide for enhanced CO2 plasticization resistance, Macromolecules,
2008, V. 41, pp. 7920–7927.
8. Gale J., Hendriks C., Turkenberg W. et al., Hollow fiber membrane contactors
for CO2 capture: From lab-scale screening to pilot-plant module conception,
Energy Procedia, 2011, no. 4, pp. 763–770.
9. Shutova A.A., Trusov A.N., Bermeshev M.V. et. al., Regeneration of Alkanolamine
solutions in membrane contactor based on novel Polynorbornene,
Oil and Gas Science and Technology, 2014, V. 69, pp. 1059–1068.
10. Volkov A.V., Tsarkov S.E., Goetheer E.L. et. al., Amine-based solvents regeneration
in gas-liquid membrane contactor based on asymmetric PVTMS,
Petroleum Chemistry, 2015, V. 55, pp. 716–723.
11. Petukhov D.I., Eliseev A.A., Gas permeation through nanoporous membranes
in the transitional flow region, Nanotechnology, 2016, V. 27, no. 8, Article
no. 085707.
12. Petukhov D.I ., Napolskii K.S., Eliseev A.A., Permeability of anodic alumina
membranes with branched channels, Nanotechnology, 2012, V. 23, no. 33,
Article no. 335601.


Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .