June 2014
Аннотированный перечень статей на русском языке

NH_50x50.png
Уважаемые читатели, Вы можете подписаться на журнал или купить его отдельный номер, используя мобильное приложение "Нефтяное хозяйство" в магазине приложений AppStore!  Удобно оплачивать! Удобно читать! Дешевле, чем обычная подписка!Требуется iOS 7.0 или более поздняя версия. Совместимо с iPhone, iPad и iPod touch. 
Dear readers, You're welcome to purchase the subscription or any single issue of the Magazine using the mobile apps Нефтяное хозяйство in AppStore. Easy to pay & read and it is cheaper than ordinary subscription to a paper issue. Compatible with iPhone, iPad and iPod touch. iOS 7.0 or later version.  
qr-code НХ.gif

Geology and geologo-prospecting works

O.A. Melkishev, V.I. Galkin, (Perm National Research Polytechnic University, RF, Perm), E.E. Kozhevnikova (PermNIPIneft Branch of LUKOIL-Engineering LLC in Perm, RF, Perm), T.V. Karaseva (Perm State University, RF, Perm)
Prediction of zonal hydrocarbon potentials Devonian clastic sediments on the south of Perm region

DOI:

Key worlds: zonal hydrocarbon potentials, Devonian clastic sediments, probability models, Perm region.

This article is concerned to geological structure of Devonian clastic sediments on the south part of Perm region. Probability models was built and used for zonal predicting hydrocarbon potential.
References
1. Kozhevnikova E.E., Collected papers “Geologiya v razvivayushchemsya
mire” (Geology in the developing world), Proceedings of VI Scientific-practical
conference of students and young scientists with international participation,
Perm', 2013, Part 1, pp. 237-241.
2. Kozhevnikova E.E., Karaseva T.V., Elektronnyy nauchnyy zhurnal “Neftegazovoe delo” – The electronic scientific journal Oil and Gas Business, 2011, no. 5, pp. 302-317. URL:
http://www.ogbus.ru/authors/Kozhevnikova/Kozhevnikova_1.pdf
3. Galkin V.I., Krivoshchekov S.N., Nauchnye issledovaniya i innovatsii, 2009,
V. 3, no. 4, pp. 3-7.
4. Galkin V.I., Sosnin N.E., Neftyanoe khozyaystvo – Oil Industry, 2013, no. 4,
pp. 28-31.
5. Sosnin N.E., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo
universiteta. Geologiya. Neftegazovoe i gornoe delo, 2012, no. 5, pp. 16-25.
6. Galkin V.I., Rastegaev A.V., Galkin S.V., Voevodkin V.L., Nauka proizvodstvu, 2006, no. 1, pp. 1-5.
7. Melkishev O.A., Krivoshchekov S.N., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe
i gornoe delo, 2012, no. 4, pp. 33-41.


Login or register before ordering

S.N. Krivoshchekov, V.I. Galkin, M.A. Nosov (Perm National Research Polytechnic University, RF, Perm
Evaluation of non-localized oil resources in Perm region by a system of elementary sections

DOI:

Key words: unit cell, unlocated resources, differentiated estimation, Perm region.

In this paper we applied the principle of differentiation of non-localized resources, depending on the weight specified by each elementary section. Resource distribution was made on the condition the constancy of the total resources within the volumetric element zoning. To determine the weight of each cell geological and mathematical model of regional-area forecast petroleum potential was created. Three previously developed geological and mathematical criteria were used: complex geochemical criterion describing the influence of source rocks for oil and gas potential, complex criterion of coverage geological and geophysical investigations and complex criterion influence the Kama-Kinel system deflections on the oil and gas potential. The calculated probability values for each cell were used as weights to calculate the resources. For each cell was calculated value of the difference between the resources in this category differentiated and uniform distribution, which was conducted earlier. It made possible to identify areas of resources increase.
References
1. Nosov M.A., Galkin V.I., Krivoshchekov S.N. et al., Neftyanoe khozyaystvo –
Oil Industry, 2013, no. 3, pp. 14–17.
2. Voevodkin V.L., Galkin V.I., Krivoshchekov S.N., Neftyanoe khozyaystvo – Oil Industry, 2012, no. 6, pp. 30–34.
3. Krivoshchekov S.N., Galkin V.I., Volkova A.S., Neftepromyslovoe delo, 2010,
no. 7, pp. 28–31.
4. Kurchikov A.R., Borodkin V.N., Galkin S.V. et al., Geologiya, geofizika i
razrabotka neftyanykh i gazovykh mestorozhdeniy, 2013, no. 10, pp. 4–13.
5. Galkin V.I., Kozlova I.A., Melkishev O.A., Shadrina M.A., Neftepromyslovoe
delo, 2013, no. 9, pp. 28–31.
6. Galkin S.V., Kozlova I.A., Galkin V.I. et al., Geologiya, geofizika i razrabotka
neftyanykh i gazovykh mestorozhdeniy, 2012, no. 11, pp. 9–13.
7. Krivoshchekov S.N., Galkin V.I., Kozlova I.A., Vestnik Permskogo natsional'nogo issledovatel'skogo universiteta. Geologiya. Neftegazovoe i gornoe
delo, 2012, no. 4, pp. 7–14.
8. Sosnin N.E., Vestnik Permskogo natsional'nogo issledovatel'skogo universiteta.
Geologiya. Neftegazovoe i gornoe delo, 2012, no. 5, pp. 16–25.
9. Galkin S.V., Vestnik Permskogo natsional'nogo issledovatel'skogo universiteta.
Geologiya. Neftegazovoe i gornoe delo, 2012, no. 4, pp. 23–32.
10. Krivoshchekov S.N., Kozlova I.A., Neftyanoe khozyaystvo – Oil Industry,
2012, no. 7, pp. 82–85.
11. Nosov M.A., Galkin V.I., Krivoshchekov S.N., Melkishev O.A., Neftyanoe
khozyaystvo – Oil Industry, 2012, no. 10, pp. 90–91.
12. Nosov M.A., Vestnik Permskogo natsional'nogo issledovatel'skogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2012, no. 2, pp. 13–17.
13. Nosov M.A., Vestnik Permskogo natsional'nogo issledovatel'skogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2012, no. 4, pp. 15–22.
14. Melkishev O.A., Krivoshchekov S.N., Vestnik Permskogo natsional'nogo
issledovatel'skogo universiteta. Geologiya. Neftegazovoe i gornoe delo,
2012, no. 4, pp. 33–41.

Login or register before ordering

S.N. Krivoshchekov, I.A. Kozlova, I.V. Sannikov (Perm National Research Polytechnic University, RF, Perm)
Estimate of the petroleum potential of the western Solikamsk depression based on geochemical and geodynamic data

DOI:

Key words: Solikamskaya depression, geochemical characteristics, geodynamic modeling, oil and gas potential.

Currently, the most promising in terms of growth of oil reserves in the Perm region is Solikamskaya depression Pre-Ural foredeep. In this paper we consider the western part in the articulation with Visimsky depression and Kamsky vault. In order to determine the prospects for oil potential we analyzed geochemical data describing conditions of sedimentation and transformation of organic matter and the major oil source strata oil and gas complexes, developed in Solikamsk depression, and graphic modeling of their dive was done. It was found that the main source rocks in the area are the Frasnian-Famennian deposits, their potential can be assessed as medium. Frasnian-Famennian deposits were in the main phase of oil generation and experienced the effect of processes katagenesis up gradation MK4, therefore, be in favorable terms for the transformation of dispersed organic matter into hydrocarbons. Thus, studied area is basic requirements for the generation, migration, accumulation of hydrocarbons.
References
1. Galkin V.I., Krivoshchekov S.N., Nauchnye issledovaniya i innovatsii, 2011,
V.5, no. 2, pp. 7–10.
2. Krivoshchekov S.N., Neftyanoe khozyaystvo – Oil Industry, 2011, no.10.
3. Galkin V.I., Kozlova I.A., Galkin S.V., Rastegaev A.V., Melkomukov V.V., Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy, 2007,
no. 10, pp. 8-11.
4. Rodionova K.F., Organicheskoe veshchestvo i neftematerinskie porody devona
Volgo-Ural'skoy neftegazonosnoy oblasti (Organic matter and source
rocks of the Devonian of the Volga-Ural oil and gas area), Moscow: Nedra
Publ., 1967, 270 p.
5. Voevodkin V.L., Galkin V.I., Kozlova I.A., Krivoshchekov S.N., Kozlov A.S., Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy, 2010,
no. 12, pp. 6-11.
6. Kozlova I.A., Galkin V.I., Vantseva I.V., Neftepromyslovoe delo, 2010, no. 7,
pp. 24-27.
7. Krivoshchekov S.N., Kozlova I.A., Neftyanoe khozyaystvo – Oil Industry, 2012, no. 7, pp. 82-85.
8. Neruchev S.G., Rogozina E.K., Neftegazoobrazovannie v otlozheniyakh domanikovogo tipa (Oil and gas formation in the Domanik sediment type),
Leningrad: Nedra Publ., 1986, 247 p.
9. Galkin V.I., Kozlova I.A., Krivoshchekov S.N., Pyatunina E.V., Pestova S.N., Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy, 2007,
no. 10, pp. 22–27.
10. Galkin V.I., Rastegaev A.V., Kozlova I.A., Vantseva I.V., Krivoshchekov S.N., Voevodkin V.L., Neftepromyslovoe delo, 2010, no. 7, pp. 4-7.

Login or register before ordering

D.V. Potekhin, I.S. Putilov (PermNIPIneft Branch of LUKOIL-Engineering LLC in Perm, RF, Perm), V.I. Galkin (Perm National Research Polytechnic University, RF, Perm)
Improve the reliability of geological models of oil fields on basis of optimized technological settings multivariate 3D modeling

DOI:

Key words: collector prognosis, geologic-geophysical model, petroleum reservoir.

The article presents the selection of the optimal settings for geological modelling at the stage of creating the cubes of lithology. More accurate realization of the geological model is received.

References
1. Potekhin D.V., Deryushev A.B., Geologiya, geofizika i razrabotka neftyanykh
i gazovykh mestorozhdeniy, 2012, no. 4, pp. 25–31.
2. Potekhin D.V., Putilov I.S., Territoriya Neftegaz, 2014, no. 2, pp. 20–23.
3. Galkin S.V., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2012,
no. 4, pp. 23-32.
4. Moroshkin A.N., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2012,
no. 5, pp. 26-31.
5. Krivoshchekov S.N., Galkin V.I., Kozlova I.A., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya.
Neftegazovoe i gornoe delo, 2012, no. 4, pp. 7-14.
6. Sosnin N.E., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2012,
no. - №5. - S.16-25.
7. Putilov I.S., Tekhnologii seysmorazvedki, 2013, no. 1, pp. 5–64.
8. Certificate of authorship of software no. 2013661302 “Mnogovariantnoe geologicheskoe 3D modelirovanie s kontrolem kachestva realizatsiy po
seysmicheskim dannym” (Multivariate geological 3D modeling with quality control of implementations on seismic data), Authors: Putilov I.S., Potekhin D.V. 

Login or register before ordering

E.V. Soboleva, A.A. Efimov ( Perm National Research Polytechnic University, RF, Perm), S.V. Galkin (PrognozRNM MIP OOO, RF, Perm)
The analysis of geological and geophysical characteristics of terrigenous reservoirs at the forecast injectability of wells of Solikamskaya depression

DOI:

Key words: terrigenous reservoir, rock wettabillity, unit resistance, hydrophobic system, injectability, input well, pressure maintenance system.

The problems of water injection engineering for terrigenous operational facilities of Solikamskaya depression fields are considered. Collectors’ hydrophobicity influence on the electrical resistance is substantiated for the study area. The analysis of influence of the specific electric resistance on the injectability of input wells and the cumulative compensation by injection sites is carried out. An approach to identification of zones with reservoir of hydrophobic type, for which methods of rock wettability change are proposed, is substantiated.
References
1. Galkin S.V., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2012,
no. 4, pp. 23–32.
2. Ilyushin P.Yu., Galkin S.V., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i
gornoe delo, 2012, no.4, pp. 77–83.
3. Nekrasov A.S., Galkin S.V., Proceedings of Regional Scientific Conference
“Geologiya Zapadnogo Urala na poroge XXI veka” (Geology of the Western
Urals at the threshold of XXI century), Perm', 1999, pp. 233–235.
4. Ebzoeva O.R., Zlobin A.A., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i
gornoe delo, 2012, no. 2, pp. 87–94.
5. Muskat M., Physical principles of oil production, McGraw-Hill Book Company,
1949.
6. Gudok N.S., Bogdanovich N.G., Martynov V.G., Opredelenie fizicheskikh
svoystv neftevodosoderzhashchikh porod (Determination of physical properties
of the oil-water-bearing rocks), Moscow: Nedra – Biznestsentr Publ.,
2007, 592 p.
7. Thiele M.R., Batycky R.P.,Water injection optimization technologies using a
streamline-based workflow, SPE 84080, 2003.

Login or register before ordering


Drilling of chinks

E.V. Kozhevnikov, N.I. Nikolaev (National Mineral Resources University (University of Mines), RF, Saint-Petersburg), O.A. Ozhgibesov, R.V. Dvoretskas (Perm National Research Polytechnic University, RF, Perm)
Studying of sedimentation influencing on cement stone properties

DOI:

Key words: horizontal well cementing, cement slurry, sedimentation.

Oil and gas horizontal well drilling associated with the big amount of challenges that may occur while drilling or completion operations. The main risk while horizontal well cementing is sedimentation of cement slurry. Isolation of paid zones can be failed that caused by annular space flows. Results of cement slurry sedimentation studying are presented. Influence of cement sedimentation on cement stone properties is considered. It is determined that plugging back stone has heterogeneity of it properties, under upper wall of horizontal well cement stone has the worst strength and filtration properties.

References
1. Chernyshov S.E., Turbakov M.S., Krysin N.I., Neftyanoe khozyaystvo – Oil Industry, 2011, no. 8, pp. 98–100.
2. Ust'kachkintsev E.N., Vestnik PNIPU. Geologiya. Neftegazovoe i gornoe
delo, 2012, no. 5, pp. 39–46.
3. Melekhin A.A., Chernyshov S.E., Turbakov M.S., Neftyanoe khozyaystvo – Oil Industry, 2012, no. 3, pp. 50–52.
4. Belousov G.A., Skorikov B.M., Maygurov I.V., Stroitel'stvo neftyanykh i
gazovykh skvazhin na sushe i na more, 2007, no. 4, pp. 47–50.
5. Melekhin A.A., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2011,
no. 1, pp. 62–67.
6. Kunitskikh A.A., Chernyshov S.E., Krapivina T.N., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2011, no. 1, pp. 53-61. 

Login or register before ordering

A.V. Vervekin, V.M. Plotnikov (Perm National Research Polytechnic University, RF, Perm), V.I. Molodilo (VNIIBT-Drilling tools Ltd2)
Process control of downhole motor technological operation during drilling oil and gas wells

DOI:

Key words: feed off control bit, differential pressure, positive displacement motor, electric powder brake, control hydraulic energy.

The article considers effective application of technology for hydraulic energy control using positive displacement motor while oil and gas wells drilling. It is shown the differences between drilling technologies such as electric power powder brake and feed off control bit. The authors designate technical and technological features of horizontal wells drilling using a calibrator in BHA.

References
1. Vervekin A.V., Proceedings of V All-Russian Conference “Problemy
razrabotki mestorozhdeniy uglevodorodnykh i rudnykh poleznykh iskopaemykh”
(Problems of development of hydrocarbon deposits and ore minerals),
Perm': Publ. of PNIPU, 2012, 52 p.
2. Vervekin A.V., Proceedings of VI All-Russian Conference “Problemy
razrabotki mestorozhdeniy uglevodorodnykh i rudnykh poleznykh iskopaemykh”
(Problems of development of hydrocarbon deposits and ore minerals),
Perm': Publ. of PNIPU, 2013, 23 p.
3. Patent no. 2013531, MPK E21V44/00 RF, Boring tool feed controller, Inventors: Molodilo V.I., Litvinov I.N.
4. Vervekin A.V., Plotnikov V.M., Stroitel'stvo neftyanykh i gazovykh skvazhin na
sushe i na more, 2013, no. 4, pp. 12–16.
5. Molodilo V.I., Korotaev S.N., D'yakonov G.A., Vestnik Assotsiatsii burovykh
podryadchikov, 2013, no. 3, pp. 28–33.

6. Molodilo V.I., Neftepromyslovoe delo, 2013, no. 9, pp. 66–69. 


Login or register before ordering

K.E. Vasileva, A.A. Melekhin, N.I. Krysin (Perm National Research Polytechnical University, RF, Perm)
Expanding composition of cement slurries for putting cement bridging of lost circulation control

DOI:

Key words: well, cement bridging, lost circulation, expanding composition of cement slurries.

Lost circulation during well construction leads to a significant increase in time and cost. The authors developed expanding composition of cement slurries based on portland cement with an expanding polymeric additive to install cement bridging in the zone of loss. The article presents results of the study of the linear expansion dynamics and a set of consistency cement compositions, as well the results of their evaluation of the plugging and storage capacity.
References
1. Lyagov I.A., Vasil'ev N.I., Lyagova M.A., Vestnik Permskogo natsional'nogo
issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe
i gornoe delo, 2012, no. 2, pp. 37-44.
2. Ust'kachkintsev E.N, Vestnik Permskogo natsional'nogo issledovatel'skogo
politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo,
2012, no. 5, pp. 39-46.
3. Volkova O.V., Lobanov D.S., Poplaukhina T.B., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya.
Neftegazovoe i gornoe delo, 2012, no. 3, pp. 94-103.
4. Yakovlev A.A., Turitsina M.V., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i
gornoe delo, 2012, no. 4, pp. 42-48.
5. Yakovlev A.A., Turitsina M.V., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe
i gornoe delo, 2012, no. 4, pp. 42-48.
6. Bulatov A.I., Makarenko P.P., Proselkov Yu.M., Burovye promyvochnye i
tamponazhnye rastvory (Liquid mud and cement slurry), Moscow: Nedra
Publ., 1999, 424 p.
7. Kostyrin V.I., Tamponazhnye materialy i khimreagenty (Grouting materials
and chemicals), Moscow: Nedra Publ., 1989, 144 p.
8. Zinina I.A., Trunnikov D.E., Andropov S.N., Shigabutdinov A.S., Stroitel'stvo
neftyanykh i gazovykh skvazhin na sushe i na more, 2013, no. 11, pp. 37-40.
9. Melekhin A.A., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo,
2011, no. 1, pp. 62-67.
10. Nikolaev N.I., Melekhin A.A., Storchak A.V., Inzhener-neftyanik, 2010,
no. 4, pp. 38-40.
11. Nikolaev N.I., Nikolaeva T.N., Ivanov A.I., Inzhener-neftyanik, 2009, no. 1,
pp. 5-8.


Login or register before ordering


Working out and operation of oil deposits

V.A. Mordvinov, D.A. Martyushev (Perm National Research Polytechnical University, RF, Perm), I.A. Chernykh (LULOIL_PERM LLC, RF, Perm), V.I. Puzikov (Universal-Service LLC, RF, Perm)
Evaluation of formation characteristics and wells productivity under primary oil recovery

DOI:

Key words: oil reservoir, primary oil recovery, index of wells productivity, well test, reservoir heterogeneity.

The authors consider peculiarities of primary oil recovery such as changes in the coefficients of wells productivity according to bottomhole pressure reduction. The results of performed hydrodynamical and geophysical well tests are estimated.
References
1. Lekomtsev A.V., Mordvinov V.A., Turbakov M.S., Neftyanoe khozyaystvo – Oil Industry, 2011, no. 4, pp. 98–100.
2. Mordvinov V.A., Poplygin V.V., Neftyanoe khozyaystvo – Oil Industry, 2011,
no. 8, pp. 120–122.
3. Martyushev D.A., Mordvinov V.A., Neftyanoe khozyaystvo – Oil Industry,
2014, no. 1, pp. 67–69.
4. Poplygin V.V., Poplygina I.S., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i
gornoe delo, 2012, no. 5, pp. 63–69.
5. Ikonnikova L.N., Zolotukhin A.B., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i
gornoe delo, 2012, no. 2, pp. 61–68.
6. Lekomtsev A.V., Turbakov M.S., Mordvinov V.A., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya.
Neftegazovoe i gornoe delo, 2010, no. 5, pp. 53–56.
7. Erofeev A.A., Ponomareva I.N., Turbakov M.S., Inzhener-neftyanik, 2011,
no. 3, pp. 12–15.
8. Dzyubenko A.I., Nikonov A.N., Vestnik Permskogo natsional'nogo issledovatel'skogo
politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2012, no. 4, pp. 56–63.
9. Erofeev A.A., Mordvinov V.A., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i
gornoe delo, 2012, no. 5, pp. 57–62.
10. Martyushev D.A., Chumakov G.N., Neft', Gaz i Biznes, 2013, no. 11,
pp. 46–48.
11. Martyushev D.A., Neftyanoe khozyaystvo – Oil Industry, 2014, no. 4,
pp. 51–53.

Login or register before ordering

D.Yu. Sednev, S.N. Krivoshchekov (Perm National Research Polytechnic University, RF, Perm)
Ways of improving the development efficiency of Yaregskoye field

DOI:

Key words: oil mine, development system, Yaregskoye deposit, thermal insulation, water proofing, heat losses, gradient excavations.

Necessity of perfection of development systems at Yaregskoye field is settled by great loss of heat in the adjacent layers, and in mines in the oil reservoirs. Improving the energy efficiency of the process will positively effect on the oil recovery, on the working conditions, and on operating costs. One of the ways to improve the efficiency of the system is to increase the average temperature of the formation. To curb the heat front and energy efficiency authors propose to perform mine insulation.
References
1. Tyun'kin B.A, Konoplev Yu.P., Opyt podzemnoy razrabotki neftyanykh
mestorozhdeniy i osnovnye napravleniya razvitiya termoshakhtnogo sposoba
dobychi nefti (Experience of underground oilfield development and main
direction of thermal-mining oil field development). 1996, 158 p.
2. Shcherbakov A.A., Turbakov M.S., Dvoretskas R.V., Neftyanoe khozyaystvo – Oil Industry, 2012, no. 12, pp. 97–99.
3. Konoplev Yu.P., Buslaev V.F., Yagubov Z.Kh., Tskhadaya N.D., Termoshakhtnaya razrabotka neftyanykh mestorozhdeniy (Thermal-mining oil field development), Moscow: Nedra-Biznestsentr Publ., 2006, 288 p.
4. Pravila bezopasnosti pri razrabotke neftyanykh mestorozhdeniy shakhtnykh
sposobom (Safety rules for the development of oil fields using mining
method), Publ. of Gosgortekhnadzor, resolution no. 8/1986, 226 p.
5. Zheltov Yu.P., Razrabotka neftyanykh mestorozhdeniy (Development of oil
fields), Moscow: Nedra Publ., 1986, 332 p.
6. Isachenko V.P., Osipova V.A., Sukomel A.S., Teploperedacha(Heat transfer),
Moscow: Energiya Publ., 1975, 488 p.
7. Kazakov B.P., Zaytsev A.V., Shalimov A.V., Vestnik Permskogo natsional'nogo
issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe
i gornoe delo, 2012, no. 2, pp. 110-114.

Login or register before ordering

.V. Lekomtsev, D.A. Martyshev (Perm National Research Polytechnic University, RF, Perm)
Comparative analysis of methods for determining BHP during well test

DOI:

Key words: producing wells, hydrodynamic well testing, bottomhole pressure, permeability, skin-factor, gas-liquid mixture density.

The article presents the results of the well test (well №281) in Unvinskoye oilfield. Comparison of the results of determining the filtration characteristics of the oilfield using methods of calculating bottomhole pressure according to the curve of fluid level recovery and the results of depth measurement is provided. It is shown that the recalculation techniques of wellhead parameters to the downhole parameters when recovering pressure curves sensitive to the reliability of the source of information and the quality of well test. It leads to a significant errors in the determination of bottomhole filtration characteristics of the field, and as a result, distorted information about the state of the bottomhole formation zone.
References
1. Lekomtsev A.V., Turbakov M.S., Mordvinov V.A., Vestnik Permskogo natsional'nogo
issledovatel'skogo politekhnicheskogo universiteta. Geologiya.
Neftegazovoe i gornoe delo, 2010, no. 5, pp. 53–56.
2. Lekomtsev A.V., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2011,
no. 1, pp. 85–93.
3. Lekomtsev A.V., Mordvinov V.A., Nauchnye issledovaniya i innovatsii, 2011,
V. 5, no. 4, pp. 29–32.
4. Lekomtsev A.V., Mordvinov V.A., Korobov G.Yu., Cherkasova Yu.S., Neft',
gaz i biznes, 2012, no. 9, pp. 68–71.
5. Lekomtsev A.V., Mordvinov V.A., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i
gornoe delo, 2012, no. 4, pp. 84–90.
6. Lekomtsev A.V., Mordvinov V.A., Turbakov M.S., Neftyanoe khozyaystvo – Oil Industry, 2011, no. 10, pp. 30–31.
7. Mishchenko I.T., Skvazhinnaya dobycha nefti (Oil production), Moscow:
Neft' i gaz Publ., 2007, 826 p.
8. Mitryukhin M.V., Ponomareva I.N., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i
gornoe delo, 2012, no. 3, pp. 104–109.
9. Erofeev A.A., Mordvinov V.A., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i
gornoe delo, 2012, no. 5, pp. 57–62
10. Erofeev A.A., Ponomareva I.N., Mordvinov V.A, Neftyanoe khozyaystvo –
Oil Industry, 2010, no. 10, pp. 113–115.
11. Ponomareva I.N., Savchik M.B., Erofeev A.A, Neftyanoe khozyaystvo – Oil
Industry, 2011, no. 7, pp. 114–115.

Login or register before ordering

Yu.A. Kashnikov, S.G. Ashihmin (Perm National Research Polytechnic University, RF, Perm), S.S. Therepanov, T.R. Baldina, E.V.Filippov (LUKOIL-PERM LCC, RF, Perm)
Experience of oriented hydraulic fracture creation at oil fields of LUKOIL-PERM LCC

DOI:

Keywords: hydraulic fracture, geomechanics, major and minor horizontal stresses, microseismic monitoring.

The results of pilot project of the pre-oriented hydraulic fracture creation are presented. Fracture treatments realized in two wells in the south of the Perm region. The results of microseismic monitoring and dipole sonic logging confirm fracture development in a given direction at certain stages.
References
1. Patent no. 2335628 RF, Method of conducting local directed hydro break of
bed, Inventors: Vyatchinin M.G., Garagash I.A., Ikonnikov Yu.A., Nikolaevskiy
V.N. et al.
2. Patent no. 2176021 RF, Method of forming directed vertical or horizontal fracture in formation fracturing, Inventors: Sokhoshko S.K., Grachev S.I.
3. Mal'tsev V.V., Asmandiyarov R.N., Baykov V.A. et al., Neftyanoe khozyaystvo – Oil Industry, 2012, no. 5, pp. 70–73.
4. Lyagov I.A., Vasil'ev N.I, Lyagova M.A., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i
gornoe delo, 2012, no. 2, pp. 37–44.

Login or register before ordering

Yu.A. Kashnikov, S.G. Ashihmin, O.Yu. Smetannikov, D.V. Shustov (Perm National Research Polytechnic University, RF, Perm)
Geomechanics research of oriented refracturing development conditions

DOI:

Keywords: hydraulic fracture, geomechanics, major and minor horizontal stresses.

Theoretical justification of oriented re-fracturing treatments is presented in this work. The principal possibility of this method is confirmed. Re-fracturing crack development calculations in an anisotropic horizontal stress field also presented.
References
1. Latypov I.D., Borisov G.A. et al., Neftyanoe khozyaystvo – Oil Industry, 2011,
no. 6, pp. 34–38.
2. Latypov I.D., Fedorov A.I., Nikitin A.A., Neftyanoe khozyaystvo – Oil Industry, 2013, no. 10, pp. 74–78.
3. Mikhin A.S., Neftyanoe khozyaystvo – Oil Industry, 2013, no. 9, pp. 50–52.
4. Liu H., Lan Zh., Zhang G. [et al.], Evaluation of refracure reorientation in both
laboratory and field scales, Pinnacle Technologies//SPE 112445. – 2008.
5. Economides M., Oligney R., Valkó P., Unified Fracture Design – Bridging the
gap between theory and practice, Orsa Press, Alvin, Texas, 2002..
6. Gubaydullin M.G., Kostin N.G., Glushkov D.V., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya.
Neftegazovoe i gornoe delo, 2012, no. 2, pp. 55–60.
7. Parton V.Z., Morozov E.M., Mekhanika uprugoplasticheskogo razrusheniya
(Elastoplastic fracture mechanics), Moscow: Nauka Publ., 1985, 504 p.

Login or register before ordering

A.A. Zlobin (Perm National Research Polytechnic University, RF, Perm)
Structural and energy method for selection of paraffin deposits inhibitors

DOI:

Key words: paraffin inhibitors, method of nuclear magnetic resonance (NMR), structure of oil disperse systems, the activation energy, size of asphaltene core.

The article describes a new method for choosing paraffin inhibitors, based on an analysis of oils by NMR. Molecular constant condensed phases - the activation energy and the average size of asphaltene core oil dispersion system are used as informative parameters. Experiments found that after the introduction of high-molecular inhibitors oil is changed the original structure of the dispersed oil at the size of nanoparticles. Quantitatively, the restructuring of the colloidal system can be described by a change in the activation energy of the dispersion medium and the structure parameters of the dispersed phase. Positive efficiency of inhibitors to reduce paraffin deposits is determined by the increase of the activation energy and decrease of the average radius of the dispersed nanoparticles. The mechanism and an equation are presented for correlation between solid deposits of oil and energy characteristics after processing by inhibitors.

References
1. Glushchenko V.N., Silin M.A., Gerin Yu.G., Neftepromyslovaya khimiya (Oilfield chemistry), Part V. Preduprezhdenie i ustranenie asfal'tenosmoloparafinovykh
otlozheniy, Moscow: Nauka Publ., 2009, 475 p.
2. Islyamov I.Sh., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2012,
no. 2, pp. 124–129.
3. Syunyaev Z.I., Syunyaev R.Z., Safieva R.Z., Neftyanye dispersnye sistemy (Oil
dispersed systems), Moscow: Khimiya Publ., 1990, 224 p.
4. Zlobin A.A., Yushkov I.R., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2010, no. 5, pp. 45–52.
5. Vashman A.A., Pronin I.S., Yadernaya magnitnaya relaksatsiya i ee primenenie
v khimicheskoy fizike (Nuclear magnetic relaxation and its application
in chemical physics), Moscow: Nauka Publ., 1979, 224 p.
6. Zlobin A.A., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo
universiteta. Geologiya. Neftegazovoe i gornoe delo, 2012, no. 5, pp. 47–56.
7. Safieva R.Z., Fizikokhimiya nefti. Fiziko-khimicheskie osnovy tekhnologii pererabotki nefti (Physical chemistry of oil. Physical and chemical fundamentals
of oil refining): Thesis of the doctor of technical science, MOSCOW, 1998
8. Zlobin A.A., Ebzeeva O.R., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i
gornoe delo, 2012, no. 2, pp. 87–94.
9. Zlobin A.A., Mordvinov V.A., Yushkov I.R., Neft', Gaz i Biznes, 2011, no. 9,
pp. 50–54.
10. Popov V.V., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2012, no. 5, pp. 76–88. 

Login or register before ordering


Technics and technology of oil recovery

G.P. Khizhnyak, I.N. Ponomareva, A.M. Amirov (Perm National Research Polytechnic University, RF, Perm), V.N. Gluschenko (PETROHIM CJSC, RF, Belgorod)
Determination of the optimal rate of injection acid compositions on the results of research on the core samples

DOI:

Key words: bottomhole formation zone, carbonate reservoir, acid composition, core sample, rate of injection.

Using core samples of productive deposits of Perm region authors were studied six acid compositions on the basis of hydrochloric acid. It is confirmed the existence of the optimal rate of injection at which the formation channel with high permeability for a minimum amount of acid composition. For researched acid composition and core samples optimal speed averaged 12,5·10-5 m/s.
References
1. Ivanov A. D., Turbakov M.S., Vestnik Permskogo gosudarstvennogo
tekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2006,
no. 1, pp. 37-40.
2. Antonov Yu.F., Mordvinov V.A., Vestnik Permskogo gosudarstvennogo
tekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2006,
no. 1, pp. 64-67.
3. Poplygin V.V, Poplygina I.S., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i
gornoe delo, 2012, no. 5, pp. 63-69.
4. Poplygin V.V., Davydova I.S., Kuznetsov I.V., Galkin S.V., Vestnik Permskogo gosudarstvennogo tekhnicheskogo universiteta. Geologiya. Neftegazovoe i
gornoe delo, 2010, no. 5, pp. 70-74.
5. Kalfayan L., Production enhancement with acid stimulation, 2nd ed., Tusla:
PennWell, 2008, 3 p.
6. Glushchenko V. N., Silin M. A., Neftepromyslovaya khimiya (Oilfield chemistry),
Part 4: Kislotnaya obrabotka skvazhin (Acidizing wells), Moscow: Interkontakt
Nauka Publ., 2010, 703 p.
7. Balueva N.Yu., Yushkov I.R., Khizhnyak G.P., Vestnik Permskogo gosudarstvennogo tekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe
delo, 2008, no. 3, pp. 44-50.
8. Suchkov B.M., Dobycha nefti iz karbonatnykh kollektorov (Oil production
from carbonate reservoirs), Izhevsk: Publ. of NITs RKhD, 2005, 688 p.
9. Khizhnyak G.P., Ponomareva I.N., Amirov A.M. et al., Neftyanoe khozyaystvo
– Oil Industry, 2013, no. 11, pp. 116-119.
10. Bazin B., From matrix acidizing to acid fracturing: a laboratory evalution of
acid/rock interactions, SPE Production and Facilities, 2001, V. 16, no. 1., pp. 22 – 29.
11. Al-Harthy Salah, Bustos Oscar A., Mathew Samuel, Options for high-temperature well stimulation, Oilfield review, 2008/2009, V. 20, no. 4, pp. 54.

Login or register before ordering

V.V. Poplygin, D.V. Golovkov (Perm National Research Polytechnic University, RF, Perm)
Estimating productivity factors of new wells of fields of Perm Krai North

DOI:

Key words: oil deposit, productivity factor, bottom-hole pressure, reservoir pressure, deformations.

The results of operation of the new production wells of fields of Perm Region North are considered. It is shown, that productivity factors of new wells, which are brought into service after deposits pilot operation, significantly reduced. The main reasons of productivity factors reduction are deterioration of an objects energy state, reducing permeability and effective thicknesses in places of the new wells bringing into operation. The estimation of the degree of influence of degassing of the reservoir oil and changes of reservoir permeability due to its deformation in the area of bottom-hole pressures below the saturation pressure for Siberian field on the change of the actual wells productivity factors is separately executed.

References
1. Poplygin V.V., Golovizina A.A., Neft', gaz i biznes, 2011, no. 8, pp. 24-26.
2. Poplygin V.V., Galkin S.V., Davydova I.S., Geologiya, geofizika i razrabotka
neftyanykh i gazovykh mestorozhdeniy, 2010, no. 12, pp. 54-58.
3. V.V. Poplygin, I.S. Davydova, I.V. Kuznetsov, S.V. Galkin, Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2010, no. 5, pp. 70-74.
4. Erofeev A.A., Mordvinov V.A., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe
i gornoe delo, 2012, no. 5, pp. 57-62.
5. Mordvinov V.A., Poplygin V.V., Erofeev A.A., Neftyanoe khozyaystvo – Oil
Industry, 2012, no. 10, pp. 102-103.
11. Lysenko V.D., Grayfer V.I., Razrabotka maloproduktivnykh neftyanykh
mestorozhdeniy (Development of low productivity oil fields), Moscow:
Nedra–Biznestsentr Publ., 2001, 562 p.
6. Poplygin V.V., Poplygina I.S., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe
i gornoe delo, 2012, no. 5, pp. 63-69.
7. Poplygin V.V., Prognozirovanie produktivnosti skvazhin i tempov
nefteizvlecheniya pri vysokoy gazonasyshchennosti plastovoy nefti (na
primere mestorozhdeniy Verkhnego Prikam'ya) (Prediction of well productivity
and oil recovery rates with high gas saturation of reservoir oil (for example,
deposits of the Upper Kama region)): thesis of candidate of technical
science, St. Petersburg, 2011.
8. Ikonnikova L.N., Zolotukhin A.B., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe
i gornoe delo, 2012, no. 2, pp. 61-68.
9. Lysenko V.D., Grayfer V.I., Razrabotka maloproduktivnykh neftyanykh
mestorozhdeniy (Development of low productivity oil fields), Moscow:
Nedra–Biznestsentr Publ., 2001, 562 p.
10. Savchik M.B., Ponomareva I.N., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe
i gornoe delo, 2012, no. 2, pp. 77-82.
11. Lekomtsev A.V., Mordvinov V.A., Turbakov M.S., Neftyanoe khozyaystvo – Oil Industry, 2011, no. 10, pp. – C. 30-31. 

Login or register before ordering

D.G. Zakirov, R.A. Fayzrahmanov, A.V. Nikolaev, N.F. Shayakbarov (Perm National Research Polytechnic University, RF, Perm)
The options to improve the underground oil extraction using the method of thermal mining development

DOI:

Key words: oil-mine, air-conditioning, low-grade heat, heat pump, energy saving.

The article describes the existing methods to reduce the temperature in the area of oil mines and their shortcomings. The authors suggest low-temperature heat generation in the process of thermal mining development.
References
1. Konoplev Yu.P., Buslaev V.F., Yagubov Z.Kh., Tskhadaya N.D., Termoshakhtnaya razrabotka neftyanykh mestorozhdeniy (Thermal-mining oil field development), Moscow: Nedra-Biznestsentr Publ., 2006, 288 p.
2. URL: http://js.com.ua.
3. Nikolaev A.V., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2011,
no. 1, pp. 143–151.
4. Kazakov B.P., Zaytsev A.V., Shalimov A.V., Vestnik Permskogo natsional'nogo
issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i
gornoe delo, 2012, no. 2, pp. 110–114.
5. Grishin E.L., Novoselitskaya L.L., Vestnik Permskogo natsional'nogo issledovatel'skogo
politekhnicheskogo universiteta. Geologiya. Neftegazovoe i
gornoe delo, 2012, no. 2, pp. 105–109.
6. Patent no. 2476798 RF, MPK F28S 1/00, F24F 9/00, Heat-exchange device for cooling of shaft ventilation stream, Inventors: Zakirov D.G., Borinskikh I.I., ZakirovG. D., Mukhamedshin M.A., Gulyaev V.E., Kuznetsov S.A.
7. Patent no. 2480683 RF, MPK F28V 30/06, F24D 17/02, Utilisation method of lowpotential heat of waste water, Inventors: Zakirov D.G., Borinskikh I.I.,
ZakirovG.D., Mukhamedshin M.A., Golubkov A.N.

Login or register before ordering


The oil-field equipment

V.A. Mordvinov, A.V. Lekomtsev, D.A. Martyushev (Perm National Research Polytechnic University, RF, Perm)
Estimation of input pump pressure during low foaming gas-content oil pumping

DOI:

Key words: pump intake pressure, density of gas-liquid mixture, producing oil, electical submersible pump.

The problems of determining the pressure at the reception submersible electric pumps during pumping gas-liquid mixture in the oil fields under the Upper Kama region on the basis of field research data analysis are considered. Dependences for the density determination liquid mixture into the well annulus are obtained.
References
1. Ikonnikova L.N., Zolotukhin A.B., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i
gornoe delo, 2012, no. 2, pp. 61–68.
2. Poplygin V.V., Poplygina I.S., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i
gornoe delo, 2012, no. 5, pp. 63–69.
3. Lekomtsev A.V., Turbakov M.S., Mordvinov V.A., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya.
Neftegazovoe i gornoe delo, 2010, no. 5, pp. 53–56.
4. Lekomtsev A.V., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2011,
no. 1, pp. 85–93.
5. Tikhomirov V.K., Peny. Teoriya i praktika ikh polucheniya i razrusheniya
(Foam. Theory and practice of their production and destruction), 2nd ed.,
Moscow: Khimiya Publ., 1983, 264 p.
6. Baykov N.M., Pozdnyshev G.N., Mansurov R.I., Sbor i promyslovaya podgotovka nefti, gaza i vody (Collection and field treatment of oil, gas and water),
Moscow: Nedra Publ., 1981, 261 p.
7. Lekomtsev A.V., Mordvinov V.A., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i
gornoe delo, 2012, no. 4, pp. 84–90.
8. Lekomtsev A.V., Mordvinov V.A., Turbakov M.S., Neftyanoe khozyaystvo – Oil Industry, 2011, no. 10, pp. 30–31.
9. Lekomtsev A.V., Mordvinov V.A., Nauchnye issledovaniya i innovatsii, 2011,
V. 5, no. 4, pp. 29–32.
10. Lekomtsev A.V., Mordvinov V.A., Korobov G.Yu., Cherkasova Yu.S., Neft',
gaz i biznes, 2012, no. 9, pp. 68–71.
11. Lekomtsev A.V., Povyshenie effektivnosti ekspluattsii dobyvayushchikh
skvazhin elektrotsentrobezhnymi nasosami pri otkachke nizkopenistoy
gazirovannoy nefti (na primere mestorozhdeniy Verkhnego Prikam'ya) (Improving
the efficiency of operation of producing wells with electric submersible
pumps during pumping out of low foaming carbonated oil (for example,
deposits of the Upper Kama region): thesis of candidate of technical
science, St. Petersburg, 2013.
12. Mishchenko I.T., Skvazhinnaya dobycha nefti (Oil production), Moscow:
Neft' i gaz Publ., 2007, 826 p.

Login or register before ordering


Rational use of oil gas

O.A. Zueva, N.L. Bachev, R.V. Bulbovich (Perm National Research Polytechnic University, RF, Perm)
Limits of stable combustion of petroleum gases

DOI:

Key words: petroleum gas, the concentration limits of combustion, Le Chatelier's principle, kinetics of reaction of the combustion, ballasting component.

The article describes the determination of the ranges of excess air factor, which provide steady burning dissimilar in composition petroleum gases with high content of nitrogen at their disposal in gas-turbine installation to generate electric energy. Concentration limits of burning at real modes of submission of the oxidant and fuel in multi-zone combustion chamber obtained by the method of Le Chatelier's and the method taking into account the kinetics of combustion. Comparison of the obtained results showed that applies the least time-consuming method Le Chatelier's principle, with sufficient accuracy for the adoption of technical solutions. The authors propose organization of the combustion process in the first zone when the excess air ratio of the obtained ranges in developing a unified multi-zone combustion chamber comprising a gas turbine plant. Flammability limit for oil produced gas with a nitrogen content of up to 60%, produced a public company LUKOIL - PERM and the RITEK - Uraloil in the fields of the Perm region.
 References
1. Zueva O.A., Bachev N.L., Bul'bovich R.V., Kleshchevnikov A.M., Neftyanoe
khozyaystvo – Oil Industry, 2014, no. 1, pp. 98–101.
2. Zueva O.A., Bachev N.L., Bul'bovich R.V., Kleshchevnikov A.M., Gazovaya
promyshlennost' – GAS Industry of Russia, 2013, V. 698, no., pp. 94–97.
3. Zueva O.A., Bachev N.L., Bul'bovich R.V., Kleshchevnikov A.M., Vestnik
Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta.
Aerokosmicheskaya tekhnika, 2013, no. 34, pp. 40–51.
4. Blinov E.A., Toplivo i teoriya goreniya (Fuel and combustion theory), St. Petersburg: Publ. SZTU, 2007, 119 p.
5. Korol'chenko A.Ya., Protsessy goreniya i vzryva (Combustion and explosion),
Moscow: Pozhnauka Publ., 2007, 266 p.

Login or register before ordering


Ecological and industrial safety

T.G. Sereda , S.N. Kostarev , E.N. Elantseva , O.F. Oshchepkova (Perm National Research Polytechnic University, RF, Perm)
Developing a safe technological process on the remediation of solid oily waste using means of industrial control

DOI:

Key words: oil sludge, remediation, industrial control.

The problems associated with the safe execution of work on the remediation of solid oily waste are considered. The characteristic of waste drilling mud, sludge and oily soils are given. The process of oil production with solid oily waste formation is considered. The processes at solid oily waste burial site are studied. It is proposed to carry out the contamination monitoring with an automated control system using firmware OMRON.

References
1. Krivoshchekov S.N., Galkin V.I., Kozlova I.A., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya.
Neftegazovoe i gornoe delo, 2012,no. 4, pp. 7–14.
2. Tananykhin D.S., Vestnik Permskogo natsional'nogo issledovatel'skogo
politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe
delo, 2012, no. 2, pp. 83–86.
3. Bereznev V.A., Kostarev S.N., Sereda T.G., Nauchnye issledovaniya i innovatsii, 2013, V. 7, no. 1–4, pp. 136–139.
4. Sereda T.G., Kostarev S.N., Geologiya, geofizika i razrabotka
neftyanykh i gazovykh mestorozhdeniy, 2007, no. 10, pp. 82–84.
5. Khukhorova L.A., Vestnik Permskogo natsional'nogo issledovatel'skogo
politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe
delo, 2012, no. 3, pp. 119–123.
6. Kostarev S.N., Elantseva E.N., Sovremennyy gorod: vlast', upravlenie,
ekonomika, 2013, no. 3, pp. 368–375.
7. Kostarev S.N., Sereda T.G., Elantseva E.N., Sovremennye problemy
nauki i obrazovaniya – Modern problems of science and education,
2013, no. 5, p. 115.
8. Nikolaev A.V., Alymenko N.I., Sadykov R.I., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya.
Neftegazovoe i gornoe delo, 2012, no. 5, pp. 115–121.
9. Andreyko S.S., Lyalina T.A., Ivanov O.V., Nesterov E.A., Vestnik
Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta.
Geologiya. Neftegazovoe i gornoe delo, 2012, no. 5, pp.
97–106.
10. Sereda T.G., Razrabotka kompleksnoy ochistki stokov s poligonov
zakhoroneniya tverdykh bytovykh otkhodov (Development of comprehensive
treatment of landfill disposal wastewater from solid waste): Thesis
of the candidate of technical science, Tula, 2000.
11. Kostarev S.N., Sereda T.G., Automated process control of sanitary
municipal solid waste landfill, World Applied Sciences, 2013, V. 22, no.
SPL.ISSUE2, pp. 64–69.
12. Sereda T.G., Kostarev S.N., Ekologicheskie sistemy i pribory, 2006, no.
11, pp. 21–24.
13. Kostarev S.N., Sereda T.G., Mikhaylova M.A., Fundamental'nye issledovaniya
– Fundamental research, 2013, no. 6–2, pp. 273–277.
14. Kostarev S.N., Cereda T.G., Klyukin A.A., Fayzrakhmanov R.A., Promyshlennye ASU i kontrollery, 2012, no. 11, pp. 01–05. 

Login or register before ordering

M.Yu. Liskova, I.S. Naumov (Perm National Research Polytechnic University, RF, Perm)
Increasing enterprise manageability oil production and refining in emergencies

DOI:

Key words: governance, resource, emergency,recovery, modelling, damage.

The authors described the model of perfection and functioning of system of maintenance with resources for liquidation of emergency at the enterprises of oil production and refining, at which use it is possible to minimize damage. It is necessary to take into account the dynamic interrelation parameters of development of emergency, restrictions on the parameters of the system elements of the maintenance with supplies, characteristics of area of functioning of system of maintenance with supplies, by working out of mathematical models for synthesis and estimations of results of functioning of system of maintenance with resources.
References
1. Naumov I.S., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2011,
no. 1, pp. 162–168.
2. Tsvirkun A.D., Akinfiev V.K., Filippov V.A., Imitatsionnoe modelirovanie v
zadachakh sinteza struktury slozhnykh sistem(Simulation modeling in problems
of structure synthesis of complex systems), Moscow: Nauka Publ., 1985, 174 p.
3. Gubaydullin M.G., Kostin N.G., Glushkov D.V., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya.
Neftegazovoe i gornoe delo, 2012, no. 2, pp. 55–60.
4. Liskova M.Yu., Naumov I.S., Neftyanoe khozyaystvo – Oil Industry, 2013, no. 4, pp. 72–74.
5. Trefilov V.A., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2011,
no. 1, pp. 169–172.
6. Nikolaev A.V., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2011,
no. 1, pp. 143–151.
7. Trifanov G.D., Knyazev A.A., Trifanov M.G., Strelkov M.A., Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, 2011, no. 1, pp. 173–188.

Login or register before ordering


The oil and gas industry



Geology and geologo-prospecting works

R.Yu. Glozhyk, A.A. Zaboeva, A.S. Bochkov (Gazpromneft NTC LLC, RF, Saint-Petersburg)
Complex assessment of reserves quality on the basias of geology and development data

DOI:

Key words: quality reserves, complex analysis, pilot development planning, workover action, hard-to-recover reserves.

The article presents the methodology of the reserves quality determining based on complex analysis of geological data, technological and economic factors. The methodology allows to identify the main geological features and their critical values for determining the reserves quality. Main features can be identified for each test object on the basis of the profitability indicators of oil production.

References
1. Neftegazovaya vertikal' – Oil & Gas Vertical, 2010, no. 5, pp. 14–35.
2. Lysenko V.D., Grayfer V.I., Razrabotka maloproduktivnykh neftyanykh
mestorozhdeniy (Development of low productivity oil fields), Moscow: Nedra-
Biznestsentr Publ., 2001, 562 p.
3. Ampilov Yu.P., Gert A.A., Ekonomicheskaya geologiya (Economic geology),
Moscow: Geoinformmak Publ., 2006, 329 p.
4. Barkov S.L., Belkina V.A. et al., Geologo-promyslovye metody izucheniya
neftyanykh zalezhey s trudnoizvlekaemymi zapasami (Field-geological
methods of oil reservoirs with hard stocks study), Tyumen': Vektor Buk Publ.,
1999, 213 p.
5. Cosentino L., Integrated reservoir studies, Paris: Technip, 2001, 310 p.
6. Lisovskiy N.N., Khalimov E.M., Vestnik TsKR Rosnedra, 2009, no. 6.
7. Khalimov E.M., Metodika i skhema geologo-ekonomicheskoy klassifikatsii
zapasov i resursov nefti dlya perspektivnogo planirovaniya (Techniques and
schemes of geological and economic oil resource classification for futureplanning), Moscow, 1987. 

Login or register before ordering

V.Yu. Kerimov, A.V. Bondarev (Gubkin Russian State University of Oil and Gas, RF, Moscow)
Conditions of formation and prospecting for hydrocarbon accumulations in the Cretaceous and Jurassic deposits of the Bolshekhetskaya depression

DOI:

Key words: modeling, Bolshehetskaya depression, forecast of oil and gas content, generation.

Article examines oil and gas potential of Bolshekhetskaya depression, based on studies of geothermobaric and geochemical conditions of formation of oil and gas accumulations and modeling hydrocarbon systems. As follows from the studies, warming sedimentary rocks in the pool was evenly until the Neogene erosion and controlled by climate change and heat flow from the base. During the erosion temperature of lower section got down slightly. For example, before Neogene erosion temperature in the model bottom (Megion layer, Upper Jurassic) reached 140 °C (in deepest part of the basin). At the end of the Neogene erosion temperature fell to an average of 110 °С. Excess pressure formed during the intense subsidence and rapid sedimentation. There were two such periods: in the Eocene (50-40 Ma) and early Miocene (20-10 Ma). According to the results of thermobaric analysis the authors synthesized maturation model of organic matter in source rocks, as well as migration and accumulation of hydrocarbons. The most promising structures for further study and exploration and rationale for these conclusions were identified.
References
1. Bondarev A.V., Teoreticheskie osnovy i tekhnologii poiskov i razvedki
nefti i gaza, 2012, no. 2, pp. 15–19.
2. Martynov V.G., Kerimov V.Yu., Shilov G.Ya., Rachinskiy M.Z., Geoflyuidal'nye davleniya i ikh rol' pri poiskakh i razvedke mestorozhdeniy nefti
i gaza (Geo-fluid pressure and their role in prospecting and exploration
of oil and gas), Moscow: Infra-M Publ., 2013, pp. 30–48.
3. Aleksandrov B.L. Shilov G.Ya. Bondarev A.V., Karotazhnik, 2011, no. 11,
pp. 36–45.
4. Shilov G.Ya., Aleksandrov B.L., Bondarev A.V., Belyaev S.V., Neft', gaz i
biznes, 2012, no. 8, pp. 37–40.
5. Kerimov V.Yu., Shilov G.Ya., Skripka A.A., Neft', gaz i biznes, 2010, no. 6,
pp. 45–48.
6. Kerimov V.Yu., Teoreticheskie osnovy i tekhnologii poiskov i razvedki
nefti i gaza, 2012, no. 1, pp. 41–50.

Login or register before ordering

K.D. Shumatbaev (BashNIPIneft LLC, RF, Ufa), O.E. Kuchurina (Bashneft-Polus LLC, RF, Ufa), L.M. Shishlova (Ufa State Petroleum Technological University, RF, Ufa)
Integrated analysis of void space in carbonates by the example of R. Trebs oil field

DOI:

Key words: reservoir, permeability and porosity, void space configuration, secondary porosity, vugs, fractures, dolomites, limestones, capillary and subcapillary pores.

The paper presents the results of core, thin section and log data analysis for the Lower Devonian Ovinparma Formation and Upper Silurian Greben Formation on R. Trebs oil field. The reservoir rocks are Devonian and Upper Silurian carbonates. Based on core and thin section description they are highly heterogeneous both in their lithology as well as in the configuration of their void space. The productive formations consist of dolomites, muddy dolomites, limestones and mudstones. The change from dolomites to calcareous dolomites and dolomitic limestones is accompanied by decrease in porosity and permeability of the reservoir. The void space is characterized by the presence of vugs and fractures. The pores are capillary and subcapillary. The comparison of reservoir properties and its structural arrangement from core data to the data evaluated from certain well-logging techniques allowed the identification of flow intervals within these complex reservoirs.
References
1. Opredelenie petrofizicheskikh kharakteristik po obraztsam (Determination
of petrophysical characteristics on formation samples): edited by Dakhnov
V.N., Moscow: Nedra Publ., 1977, 432 p.
2. Vinogradov V.G., Dakhnov A.V., Patsevich S.L., Praktikum po petrofizike
(Practicum on petrophysics), Moscow: Nedra Publ., 1990, 226 p.
3. Metodicheskie rekomendatsii po podschetu zapasov nefti i gaza
ob"emnym metodom (Guidelines for the calculation of oil and gas reserves
by volumetric method): edited by Petersil'e V.I., Poroskuna V.I., Yatsenko G.G..
Moscow –Tver': Publ. of VNIGNI, NPTs «Tver'geofizika», 2003, 257 p.

Login or register before ordering


Drilling of chinks

A.Yu. Presnyakov, I.Yu. Lomakina , T.E. Nigmatullin (RN- UfaNIPIneft LLC, RF, Ufa) , R.K. Razyapov , A.S. Sorokin (Vostsibneftegas JSC, RF, Krasnoyarsk)
An integrated approach to the selection of technologies for controlling water and gas inflow under the conditions of Yurubcheno-Tokhomskoye field

DOI:

Key words: water and gas inflow insulation, carbonate reservoirs, the design of repair and insulation work.

The presence of natural vertical and subvertical fissures in the reservoir of Yurubcheno-Tokhomskoye field, on the one hand, provides good hydrodynamic link between well and subhorizontal cavernous intervals, forming the main reservoir capacity, on the other hand, it can cause rapid gas pollution and flooding during well operation. At insulating gas and water inflows, the movement of plugging compositions in the formation can occur through the same fissures that allow the inflow of oil into the wellbore, and therefore the risk of losing the productivity of the formation is high. It is shown that in such circumstances it is advisable to use a series of compositions with the effect of uneven reducing the permeability, volumes of which are selected subject to developed technique of construction the design of repair and insulation works.

References
1. Afanas'ev I.S., Antonenko D.A., Kutukova N.M. et al., Neftyanoe khozyaystvo – Oil Industry, 2011, no. 6, pp. 10–13.
2. Kutukova N.M., Birun E.M., Malakhov R.A. et al., Neftyanoe khozyaystvo – Oil Industry, 2012, no. 11, pp. 4–7.
3. Polo P.O., Monroy R.R., Toledo N.R. et al., Field applications of low molecular-
weight polymer activated with an organic crosslinker for water conformance
in South Mexico, SPE 90449, 2004.
4. Diaz I., Nava T., Deolarte C. et al., Successfully controlling unwanted gas production in a highly naturally fractured carbonate reservoir, SPE 163085, 2011.
5. Thomas F.B., Bennion D.B. et al., Water shut-off treatments – reduce water
and accelerate oil production, JCPT, 2010, April, V. 39, no. 4, pp. 25–29.
6. Al-Sharji H., Ehtesham A., Kosztin B. et al., Challenging chemical shut off in
a fractured carbonate reservoir – case studies, SPE 112021, 2008.
7. Dalrymple D., Eoff L. et al., Shallow penetration particle-gel system for water
and gas shut-off applications, SPE 114886, 2008.
8. Ali E., Bergren F., DeMestre P. et al., Effective gas-shutoff treatments in a fractured carbonate field in Oman, SPE 102244, 2006.
9. Albidrez P., Dalrymple E.D. et al., Using crystallized superabsorbent copolymer
for plugging high-permeability channeling and vugular communication,
SPE 117155, 2008.
10. Khismetov T.V., Bernshteyn A.M., Silin M.A. et al., Neftyanoe khozyaystvo –
Oil Industry, 2009, no. 6, pp. 50–53.
11. Wang Y., Bai B., Zhao F., Study and application of a gelled foam treatment
technology for water shutoff in naturally fractured reservoir, PETSOC 2008-037,
Canadian International Petroleum Conference, Calgary, Alberta, Jun 17 19,
2008.
12. Thach R.H., Miller K.C., Lai Q.J. et al., Matrix gas shut-off in hydraulically
fractured wells using polymer-foams, SPE 36616, 1996.
13. Bouts M.N., Vries A.S., Dalland M., Hanssen J.E., Design of near wellbore
foam treatments for high GOR producers, SPE 35399, 1996.
14. Strizhnev V.A., Presnyakov A.Yu., Nikishov V.I., Mikhaylov A.G., Nauchnotekhnicheskiy vestnik OAO “NK “Rosneft'”, 2010, no. 4, pp. 36–39.
15. Zozulya G.P., Kleshchenko I.I., Geykhman M.G., Chabaev L.U., Teoriya i
praktika vybora tekhnologiy i materialov dlya remontno-izolyatsionnykh
rabot v neftyanykh i gazovykh skvazhinakh (Theory and practice of choice
the technologies and materials for remedial cementing operations in oil and gas wells), Tyumen': Publ. of TyumGNGU, 2002, 138 p. 

Login or register before ordering


Working out and operation of oil deposits

N.P. Lebedynets (VNIIneft OAO, RF, Moscow)
About deformation changes of fractured reservoirs permeability

DOI:

Key words: fractured reservoir, permeability, well productivity, pressure, strain, elastic capacity.

The increased interest in the possible anthropogenic changes in reservoir properties of productive deposits in the process of well operation and oil fields development is recently observed. At the same time the decrease of permeability of fractured reservoir rocks at formation pressure drop

is primarily implied. Some results of modern and earlier research with respect to Yurubcheno-Tokhomskoye and other fields with fractured reservoirs are considered. The conclusion on the feasibility of realization in many cases of elastic capacity of oil-and-water bearing systems with no concern about productive deposits permeability is made. It seems that a certain restraint at the interpretation of results of any research and development on their basis practical recommendations for real fields is necessary. In many cases, the elastic capacity of deposits with fractured reservoirs (of their oil-and-water bearing systems) can be used for oil recovery with little concern about the layers conductivity and wells productivity and at a big savings for reservoir pressure maintenance. At the same time it is impossible to exclude and some possible negative technological changes of reservoir properties by individual objects, primarily shallow lying, with increased bed shaliness. In each case a comprehensive analysis of available data and a possibly fuller account of the know-how are needed.
References
1. Kashnikov Yu.A., Gladyshev S.V., Razyapov R.K. et al., Neftyanoe khozyaystvo – Oil Industry, 2011, no. 4, pp. 104–107.
2. Ashikhmin S.G., Kashnikov Yu.A., Yakimov S.Yu., Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy, 2013, no. 2, pp. 36–41.
3. Kashnikov Yu.A., Ashikhmin S.G., Shustov D.V. et al., Neftyanoe khozyaystvo– Oil Industry, 2013, no. 4, pp. 40–43.
4. Gladkov E.A., Geologiya, geofizika i razrabotka neftyanykh i gazovykh
mestorozhdeniy, 2011, no. 10, pp. 34–36.
5. Afanas'ev I.S., Antonenko D.A., Kutukova N.M. et al., Neftyanoe khozyaystvo – Oil Industry, 2011, no. 6, pp. 10–13.
6. Lebedinets N.P., Izuchenie i razrabotka neftyanykh mestorozhdeniy s treshchinovatymi kollektorami (Study and development of oil fields with fractured reservoirs), Moscow: Nauka Publ., 1997, 397 p.
7. Lebedinets N.P., Syunyaev Ya.Kh., Sorochinskaya A.V, Neftyanoe khozyaystvo – Oil Industry, 1968, no. 6, pp. 35–38.
8. Lebedinets N.P., Geologiya nefti i gaza – The journal Oil and Gas Geology,
1991, no. 2, pp. 26–29.
9. Maydebor V.N., Postash M.F., Lebedinets N.P. et al., Neftyanoe khozyaystvo– Oil Industry, 1962, no. 4, pp. 29–35.
10. Lebedinets N.P., Proceedings of SevKavNII, 1967, V. 3, pp. 64–68.
11. Lebedinets N.P., Tagunova A.V., Neftepromyslovoe delo, 1974, no. 6., pp. 3–5.
12. Maydebor V.N., Razrabotka neftyanykh mestorozhdeniy s treshchinovatymi
kollektorami (Development of oil fields with fractured reservoirs), Moscow: Nedra
Publ., 1971, 231 p.
13. Neft' i kapital – Oil & Capital, 2013, no. 4, pp. 53–57.
14. Maydebor V.N., Osobennosti razrabotki neftyanykh mestorozhdeniy s
treshchinovatymi kollektorami (Features of the development of oil fields with fractured reservoirs), Moscow: Nedra Publ., 1980, 288 p.

Login or register before ordering


I.A. Akhmadeyshin (RITEK OJSC, RF, Moscow)
On the technological schemes wag with simultaneous injection gas and water

DOI:

Key words: simultaneous water alternating gas injection, associated petroleum gas, oil recovery.

Today in Russia and abroad are actively developing technologies to improve the recovery of hydrocarbons from the formation and rational use of associated petroleum gas. One such technology is the water alternating gas injection. This paper presents an analysis of technological schemes of simultaneous water alternating gas injection.

References
1. Kokorev V.I., Tekhniko-tekhnologicheskie osnovy innovatsionnykh metodov
razrabotki mestorozhdeniy s trudnoizvlekaemymi i netraditsionnymi zapasami
nefti (Technical and technological bases of innovative development fields with
hard and unconventional oil reserves): thesis of doctor of technical science,
Moscow, 2010.
2. Sohrabi M., Danesh A., Tehrani D.H., Oil recovery by near-miscible SWAG injection, Petroleum Engineering Institute, Heriot-Watt U., SPE 94073, 2005.
3. Stone H.L., Stone H.L., A simultaneous water and gas flood design with extraordinary vertical gas sweep, SPE 91724, 2004.
4. Ning S.X., McGuire P.L., Improved oil recovery in under-saturated reservois
using the US-WAG process, SPE 89353, 2004.
5. Kokorev V.I., Akhmadeyshin I.A., Proceedings of The final conference in 2008
on priority “Ratsional'noe prirodopol'zovanie” (Rational nature management),
Sankt-Peterburg, 2008, pp. 17-19.
6. Zatsepin V.V., Neftepromyslovoe delo, 2007, no. 2, pp. 9-15. 

Login or register before ordering

I.A. Guskova, Dr.Sc., A.A. Rybakov, A.T. Gabdrakhmanov (Almetyevsk State Petroleum Institute, RF, Almetyevsk), T.N. Yusupova, E.E. Barskaya (Arbuzov Kazan Organic and Physical Chemistry Institute, Kazan Research Center of RAS, RF, Kazan)
On methods of hydraulic fracturing efficiency evaluation

DOI:

Key words: hydraulic fracturing, optical properties, residual oil reserves, oil recovery factor, light absorption coefficient.

The authors analyzed the effect of hydraulic fracturing on the process of residual oil displacement for the terrigenous Devonian formations of the Romashkinskoye field. Hydraulic fracturing, like any other EOR method, might improve reservoir performance through increase of both oil displacement efficiency and conformance. To understand reservoir response to hydraulic fracturing and to evaluate the effect of the technology, the authors suggest analyzing producing well performance together with variations of the light absorption coefficient. The paper also presents comparative analysis of well performance, light absorption variations, and fractional analysis following hydraulic fracturing.
References
1. Ibatullin R.R., Gus'kova I.A., Gabdrakhmanov A.T. et al., Neftyanoe
khozyaystvo – Oil Industry, 2013, no. 11, pp. 113–115.
2. Gus'kova I.A., Gabdrakhmanov A.T., Neftyanoe khozyaystvo – Oil Industry,
2011, no. 4, pp. 101–103.
3. Patent no.2429343 RF, MPK E 21 V 43/16, Oil deposit development method,
Inventors: Ibragimov N.G., Gus'kova I.A., Ibatullin R.R., Rakhmanov A.R., Gabdrakhmanov A.T., Shvetsov M.V.

Login or register before ordering

S.M. Durkin (Ukhta State Technical University, RF, Ukhta)
The adaptation results of hydrodynamic researches of well № 1988 the Usinsk heavy oil field by numerical simulation

DOI:

Key words: numerical simulation, heavy oil, a well, well tests, nonlinear filtration law.

This article is devoted to the improvement of the methods of well tests interpretation for heavy oil field with fractured reservoirs. Creation of the numerical mathematical model of the well, draining fractured porous reservoir is presented. The developed model will allow to describe the well tests and to identify the type of filtration flow characteristic of fractured reservoirs.
References
1. Ruzin L.M., Morozyuk O.A., Durkin S.M., Neftyanoe khozyaystvo – Oil Industry, 2013, no. 8, pp. 51–53.
2. Ruzin L.M., Morozyuk O.A., Durkin S.M., Neftyanoe khozyaystvo – Oil Industry, 2013, no. 8, pp. 54–57.
3. Ametov I.M., Baydikov Yu.N., Ruzin L.M., Spiridonov Yu.A., Dobycha tyazhelykh vysokovyazkikh neftey (Extraction of heavy viscous oils), Moscow: Nedra Publ., 1985, 205 p.
4. Ruzin L.M. Chuprov I.F., Tekhnologicheskie printsipy razrabotki zalezhey
anomal'no vyazkikh neftey i bitumov (Technological principles of development
of deposits of abnormally viscous oils and bitumens), Ukhta: USTU, 2007,
244 p.
5. Nazarov A.V., Nauka i tekhnologiya uglevodorodov – Science and Technology
of Hydrocarbons, 2002, no. 3.
6. Certificate of state registration of computer programs no. 2013619167.
Gidrogazodinamicheskiy kompleks-simulyatov “Ekaterina” (Hydrogasdynamic
simulation complex "Ekaterina"), author Durkin S.M.
7. Barenblatt G.I., Zheltov Yu.P., Kochina I.N., Prikladnaya matematika i
mekhanika – Journal of Applied Mathematics and Mechanics, 1960, V. XXIV,
no. 5, pp. 852–864.
8. Mirzadzhanzade A.Kh., Khasanov M.M., Bakhtizin R.N., Modelirovanie protsessov neftegazodobychi. Nelineynost', neravnovesnost', neopredelennost'
(Modelling of oil and gas production processes. Nonlinearity, disequilibrium, uncertainty), Moscow-Izhevsk: Publ. of Institute of Computer Science, 2004, 368 p.
9. Kremenetskiy M.I., Ipatov A.I., Gidrodinamicheskie i promyslovo-tekhnologicheskie issledovaniya skvazhin (Hydrodynamic and industrial-technological wells research), Moscow: MAKS Press, 2008, 476 p.

Login or register before ordering


The oil-field equipment

S.N. Peshcherenko (Perm National Research Polytechnic University, RF, Perm), E.V. Poshvin, A.S. Fadeikin (Novomet-Perm CJSC, RF, Perm)
Electromagnetic calculation of submersible induction motor

DOI:

Keywords: submersible induction motor, finite element method, efficiency, Maxwell equations, performance of the engine, magnetic losses, the filling factor of stator slots.

Method of workflow simulation submersible induction motors based on the Maxwell's equations solution was developed. Performance of some typical motors was calculated. Developed method allows to calculate the limits of increasing the efficiency of modern submersible induction motors by increasing the filling factor of stator slots, reducing the magnetic stator iron losses and reducing rotor-stator gap to values close to the maximum allowable.
References
1. Katalog oborudovaniya WOOD Group ESP Inc. (Equipment catalog of
WOOD Group ESP Inc.), 2001.
2. Kaverin M., Energy-efficient EZline ESPs by Slumberger tested in Samotlorneftegas, TNK-BP Technology magazine,January 2012.
3. Ivanov-Smol'skiy A.V., Elektricheskie mashiny (Electric machines), Moscow:
Publ. of Moscow Power Engineering Institute, 2004.
4. Sarapulov S.F., Shymchak P., Matematicheskie modeli lineynykh induktsionnykh
mashin na osnove skhem zameshcheniya (Mathematical models of linear
induction machines based on equivalent circuits), Ekaterinburg: Publ. of
Ural Polytechnic Institute, 2001, 236 p.
5. Brynsiy E.A., Danilevich Ya.B., Yakovlev V.I., Elektromagnitnye polya v elektricheskikh mashinakh (Electromagnetic fields in electric machines),
Leningrad: Energiya Publ., 1979, 176 p.
6. Inkin A.I., Elektromagnitnye polya i parametry elektricheskikh mashin (Electromagnetic fields and parameters of electric machines), Novosibirsk: YuKEA
Publ., 2002, 463 p.
7. Belyaev E.F., Shulakov N.V., Diskretno-polevye modeli elektricheskikh mashin
(Discrete field models of electrical machines), Perm': Publ. of Perm State
Technical University, 2009.
8. Marwaha S., Garg N., Evaluation of electromagnetic characteristics for linear
induction motor using finite element method, International Journal of Engineering,
Science and Technology, 2011, V. 3, no. 11, pp. 28-34.
9. Kuria J., Hwang P., Modeling power losses in electric vehicle BLDC motor,
Journal of Energy Technologies and Policy, ISSN 2224-3232, 2011, V. 1, no. 4,
pp. 8-17.
10. Pietrowski W., Field-circuit analysis of AC machine taking into account stator
winding asymmetry, Prace Naukowe Institutu Maszyn, Napedow I Pomiarow
Elektrycznych Politechniki Wroclawskiej, 2012, no. 66, pp. 386-392.
11. Zamchalkin A. S., Tyukov V. A., Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki - Proceedings of TUSUR University, 2012, no.1 (25), Part 1, pp. 171-177.
12. Feynman R.F., Leighton R.B., Sands M., The Feynman lectures on physics,
Addison Wesley Publishing Company, 1963-1964.
13. Landau L.D., Lifshits E.M., Elektrodinamika sploshnykh sred (Electrodynamics
of continuous media), Moscow: Nauka Publ., 1982, 620 p.
14. Tikhonov A.N. Samarskiy A.A., Uravneniya matematicheskoy fiziki (Equations
of mathematical physics), Moscow: Nauka Publ., 1999, 735 p.
15. Spoen N.Dzh., V mire nauki – Scientific American, 1984, no. 3, pp. 72-82.
16. Druzhinin V.V., Magnitnye svoystva elektrotekhnicheskoy stali (The magnetic
properties of electrical steel), Moscow: Energiya Publ., 1974, p. 240.

Login or register before ordering


Transport and oil preparation

A.T. Faritov, L.P. Khudiakova, Yu.G. Rogdestvenskiy, А.А. Shestakov (GUP IPTER, RF, Ufa), S.N.Vagaytsev, A.V. Paripsky, M.F. Galiullin (Samotlorneftegaz JSC, RF, Nizhnevartovsk)
Effect of solids precipitation and deposition of corrosion products on the protective ability of inhibitors

DOI:

Key words: inhibition, internal corrosion, sediments and suspended solids.

The article presents of experimental determined quantitative loss of corrosion inhibitor as a result of adsorption on suspended particles of sand, calcite, clay and iron sulfide. The last two are particularly dangerous: clay can reduce the concentration of reagent in the solution at a concentration comparable to that of its, iron sulfide - the concentration of up to 20 times greater than self. Precipitation solids and sediments of the corrosion products lead to the formation of a potential difference between the surfaces of the metal under the deposition and without deposits. On the basis of experiments it is shown that when there is insufficient inhibition of metal deposition galvanic effect occurs. This effect can lead to accelerated corrosion of metal under the sediment. Thus, to improve the effectiveness of inhibitors should be cleaned pipes or choose inhibitors are able to penetrate through the sediments on the metal.
References
1. Laptev A.G., Basharov M.M., Farakhova A.I., Nauchnyy zhurnal KubGAU -
Scientific Journal of KubSAU, 2011, no. 68(04), pp. 147-177.
2. Zav'yalov V.V., Problemy ekspluatatsionnoy nadezhnosti truboprovodov na
pozdney stadii razrabotki mestorozhdeniy (Pipelines operational reliability
problems at a later stage of field development), Moscow: Publ. of VNIIOENG,
2005, 332 p.
3. Markin A.N., Nizamov R.E., Sukhoverkhov S.V., Neftepromyslovaya khimiya:
prakticheskoe rukovodstvo (Oilfield chemistry: a practical guide), Vladivostok:
Dal'nauka Publ., 2011, p. 288.
4. Huang J., Brown B., Jiang X., Kinsella B., Nesic S., Internal CO2 corrosion of
mild steel pipelines under inert solid deposits, NACE Corrosion 2010 Conference
@ Expo, paper no. 10379.
5. Nyborg R., Foss M., Experience with an under deposit corrosion test method
with galvanic current measurement, NACE, Corrosion 2011 Coference @
Expo, paper no. 11259.
6. Hinds G., Turnbull A., Novel multi-electrode test method for evaluating inhibition
of underdeposit corrosion, Part 1: Sweet conditions, CORROSION,
2010, V. 66, no. 4.
7. Suraj T., Techniques to analyze underdeposit corrosion, Department of Materials Science and Engineering, Case Western Reserve University, August, 2010, p. 151.

Login or register before ordering


Power supply

A.A. Dmitriev, V.P. Frayshteter (Giprotyumenneftegaz OAO, HMS Group, RF, Tyumen)
Improving energy efficiency of building heating and ventilation systems by use of two-stage electrostatic precipitator

DOI:

Keywords: two-stage electrostatic precipitator , recycling, air purification, energy efficiency.

A method to reduce energy consumption for heating and ventilation of buildings is proposed. It is based on air purification using single-zone two-stage wet electrostatic precipitator. The principle of operation of the given device, its design features are described. A method for calculating the volume of fresh supplied air, which is based on compensation of an oxygen lack in the air mixture, rather than maintaining the desired room temperature, is suggested.
References
1. Dmitriev A.A., Frayshteter V.P., Neftyanoe khozyaystvo – Oil Industry, 2013,
no. 5, pp. 114–116.
2. Dmitriev A.A., Vozmilov A.G., Andreev L.N., Zherebtsov B.V., Elektrotekhnicheskie i informatsionnye kompleksy i sistemy, 2013, V. 9, no. 4, pp. 60-65.
3. SP 60.13330.2012, Otoplenie, ventilyatsiya i konditsionirovanie (Heating, ventilation and air conditioning), SNiP 41-01-2003 (data vvedeniya 01.01.13 g.).

Login or register before ordering


Information technology

O.S. Zatik, I.G. Katrichek, T.Yu. Sidorova (SurgutASUneft, Surgutneftegas OJSC, RF, Surgut)
Providing quality of data about technological complex in Integrated information system of Surgutneftegas OJSC

DOI:

Key words: engineering ontology, templates,data integration, system independent model, Gellish, data management, SAP products.

The aim of this work is the formation of holistic and reliable representation of technological complex (TC) in all phases of its life cycle in Integrated Information System (IIS) of company. The main components of architecture are implemented using information system (IS) Gellish and SAP products, such as SAP MDM, SAP CE, SAP PI, SAP HANA. For Information model creation, that is independent of data storage model, semantic modeling technique Gellish was adapted. In 2012 the first edition of templates for energy facilities and drilling rigs using IS Gellish was designed, in 2013 a prototype of the well was intended, and in 2014 plans are to implement OMD-storage based on SAP HANA, in 2015 as a part of a pilot management system it is planned to approve master data on energy facilities and drilling rigs in an Integrated Information System of the Company. Implementation of described architectural decision will solve the problem of semantic integration of data on technological complex between various information systems of the company, and will ensure the required quality of data on a technological complex in the Integrated Information system of the company.
References
1. Van Renssen A., Gellish formal English. Definition and application of a universal
information modeling language, A.S.H.P. van Renssen, 2013, 221 p.
2. URL: http://gellish.net/index.php/semantic-modeling.html.
3. Van Renssen A., Gellish: a generic extensible ontological language, URL:
http://gellish.net/index.php/downloads/file/20-proefschrift-gellish-
19aug2005-incl-app.html.

Login or register before ordering