Approach to modeling of thermal recovery technology

UDK: 622.276.65.001.57
DOI: 10.24887/0028-2448-2025-10-65-70
Key words: thermal recovery technology, 3D thermal flow simulation, heavy oil field, nonisothermal multiphase flow
Authors: M.G. Persova (Novosibirsk State Technical University, RF, Novosibirsk); Yu.G. Soloveychik (Novosibirsk State Technical University, RF, Novosibirsk); D.А. Leonovich (Novosibirsk State Technical University, RF, Novosibirsk); K.M. Vinogradov (Novosibirsk State Technical University, RF, Novosibirsk); А.V. Nasybullin (Almetyevsk State Technological University «Petroleum Higher School», RF, Almetyevsk; TatNIPIneft, RF, Almetyevsk); M.I. Amerkhanov (TATNEFT PJSC, RF, Almetyevsk)

The paper considers an approach to thermal flow simulation of thermal recovery technology. The technology entails steam injection in heavy oil reservoir to heat it up and thereby reduce oil viscosity. The paper presents a modeling method based on finite element pressure estimation with flow balancing and explicit phase transition allowing for local time stepping for a separate group of elements to enable consistent estimation of phase saturations. The method considers energy release/consumption during changes in physical state of water, while temperature estimation is coupled with finite-element pressure analysis. Temperature changes resulting from fluid transfer and heat flows associated with thermal conductivity of the medium are also considered. Heat flows are estimated using finite-difference approximation enabling local balance of heat energy. The grid is generated in such a way that well design is defined by grid lines. Comparison of simulated and actual oil production data over the period of 3,5 years is presented for one of heavy oil fields in the Republic of Tatarstan. A good match between simulated and field data is demonstrated for various well pairs located within the field area of interest. Well interference study suggests significant potential effects from offset wells. Hence, optimization of field development necessitates that simulation studies be conducted with account of offset wells, rather than for individual well pair.

References

1. Liu P. et al., Experimental and numerical investigation on extra-heavy oil recovery by steam injection using vertical injector – horizontal producer, Journal of Petroleum Science and Engineering, 2021, V. 205, DOI: https://doi.org/10.1016/j.petrol.2021.108945

2. Mokheimer E.M.A. et al., A comprehensive review of thermal enhanced oil recovery: Techniques evaluation, Journal of Energy Resources Technology, 2019, V. 141, no. 3, DOI: https://doi.org/10.1115/1.4041096

3. Mozaffari S. et al., Numerical modeling of steam injection in heavy oil reservoirs, Fuel, 2013, V. 112, pp. 185–192, DOI: https://doi.org/10.1016/j.fuel.2013.04.084

4. Lawal K.A., Olamigoke O., On the optimum operating temperature for steam floods, SN Applied Sciences, 2021, V. 3, DOI: https://doi.org/10.1007/s42452-020-04082-2

5. Mir H., Siavashi M., Whole-time scenario optimization of steam-assisted gravity drainage (SAGD) with temperature, pressure, and rate control using an efficient hybrid optimization technique, Energy, 2022, V. 239, DOI: https://doi.org/10.1016/j.energy.2021.122149

6. Siavashi M., Garusi H., Derakhshan S., Numerical simulation and optimization of steam-assisted gravity drainage with temperature, rate, and well distance control using an efficient hybrid optimization technique, Numerical Heat Transfer, Part A: Applications, 2017, V. 72, no. 9, pp. 721–744,

DOI: https://doi.org/10.1080/10407782.2017.1400330

7. Khisamov R.S., Nazimov N.A., Khairullin M.Kh. et al., Estimation of the inflow profile to the horizontal wellbore based on the results of thermohydrodynamic research (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2021, no. 12, pp. 114–116, DOI: https://doi.org/10.24887/0028-2448-2021-12-114-116

8. Khisamov R.S., Morozov P.E., Khairullin M.Kh. et al., Simulation of the SAGD process taking into account the threshold pressure gradient (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2018, no. 8, pp. 48-51, DOI: https://doi.org/10.24887/0028-2448-2018-8-48-51

9. Soloveichik Y.G. et al., A method of FE modeling multiphase compressible flow in hydrocarbon reservoirs, Computer Methods in Applied Mechanics and Engineering, 2022, V. 390, DOI: https://doi.org/10.1016/j.cma.2021.114468

10. Persova M.G., Soloveichik Yu.G., Ovchinnikova A.S. et al., On the approach to oil production optimization using chemical stimulation methods (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2023, no. 3, pp. 42–47, DOI: https://doi.org/10.24887/0028-2448-2023-3-42-47

11. Persova M.G., Soloveychik Yu.G., Grif A.M., Flow balancing in modeling of multi-phase flow using non-conformal finite element meshes (In Russ.), Programmnaya inzheneriya, 2021, V. 12, no. 9, pp. 450–458, DOI: https://doi.org/10.17587/prin.12.450-458

12. Persova M.G., Soloveychik Yu.G., Patrushev I.I., Ovchinnikova A.S., Application of the finite element grouping procedure to improve the efficiency of unsteady multiphase flow simulation in high-heterogeneous 3D porous media (In Russ.), Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel’naya tekhnika i informatika, 2021, V. 57, pp. 34–44, DOI: https://doi.org/10.17223/19988605/57/4

13. Rivkin S.L., Aleksandrov A.A., Termodinamicheskie svoystva vody i vodyanogo para: spravochnik (Thermodynamic properties of water and water vapor), Moscow: Energoatomizdat Publ., 1984, 80 p.



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Юбилей Великой Победы

Pobeda80_logo_main.png В юбилейном 2025 году подготовлены: 
   - специальная подборка  статей журнала, посвященных подвигу нефтяников в годы Великой Отечественной войны;  
   - списки авторов публикаций журнала - участников боев и участников трудового фронта

Press Releases

17.10.2025
14.10.2025
25.09.2025
23.09.2025
12.09.2025