Evaluation of bottomhole pressure without shutting down a well equipped with a sucker-rod pump

UDK: 622.276.5:665.613.2
DOI: 10.24887/0028-2448-2023-3-54-57
Key words: sucker-rod pump, watered well, dynamic fluid level, reservoir pressure, initial pressure drop, tubing, initial pressure gradient, level curves
Authors: T.U. Khankishiyeva (Azerbaijan State Oil and Industry University, the Republic of Azerbaijan, Baku)

The article proposes new methods for studying the curves of the dynamic level of high-viscosity Newtonian and viscoplastic oil without stopping the operation of wells equipped with a sucker-rod pump. It is known that when such curves are taken in wells producing Newtonian oil with low dynamic viscosities, their final stabilized sections are combined in a short time and give an accurate value of the static oil level. Therefore, in such cases, it is sufficient to record one curve. In wells producing high-viscosity Newtonian or viscous-plastic oil, it is necessary to record both curves. However, recording of such curves needs a long time.

The proposed method makes it possible to exclude long shutdowns of the well. The initial parts of the curves (level restoration and level drop) are recorded within 5-6 hours. Empirical equations are selected to describe these sections. Using the obtained empirical equations, further changes in dynamic levels and bottomhole pressure is predicted. Level measurements are carried out using the Quantor-4 Micro hardware and software complex, which includes an echometer, dynamometer, current clamps and a radio extender. During research, the following operations are performed. With the help of a hose, all well production is directed to the annulus. The oil level is monitored until it is completely stabilized. Some oil ends up in the reservoir. A drop in the level of oil in the well is recorded. As an example of the application of the proposed method, the results of constructing level curves, as well as bottomhole pressure calculations for two wells operating in the Kalmas and Kushkhana areas of the Oil and Gas Production Department named after. A.J. Amirov.

References

1. Mustafaev S.D., New method for determining reservoir pressure in downhole pumping wells (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 1968, no. 8, pp. 39-42.

2. Mustafaev S.D., Guliev R.A., Khanaliev V.B., New method for determining reservoir pressure in sucker-rod pump well (In Russ.), Mezhdunarodnyy nauchno-issledovatel'skiy zhurnal, 2020, no. 2 (92), pp. 98–104, DOI: https://doi.org/10.23670/IRJ.2020.92.2.019

3. Gurbanov V.Sh., Mustafaev S.D., Eyvazova Z.E. et al., Universal hydrodynamic method for periodically isolating produced water in irrigated pumping wells (In Russ.), EKOENERGETİKA, 2019, no. 4, pp. 23–26.

4. Qurbanov V.Ş., Mustafayev S.D., Eyvazova Z.E. et al., Mürəkkəb geoloji–fiziki şəraitdə ştanqlı dərinlik nasos neft quyularının optimal texnoloji iş rejimlərinin müəyyən edilməsi, ANT, 2020, no. 1, pp. 26–29.

5. Mustafayev S.D., Quliyev R.A., Xanəliyev V.B., Ştanqlı dərinliknasos istismar quyularının iş rejimlərinin dəyişdirilməsi üsulu, ANT, 2017, no. 12, pp. 21–25.

6. Samedov T.A., Mustafaev S.D., Novruzova S.G. et al., Static pressure determination of the reservoirs containing high-viscous newtonian and viscous-plastic oils by bilateral pressure recovery (In Russ.), Neftepromyslovoe delo, 2016, no. 1, pp. 41–48.

7. Mirzadzhanzade A.Kh., Kovalev A.G., Zaytsev Yu.V., Osobennosti ekspluatatsii mestorozhdeniy anomal'nykh neftey (Features of exploitation of deposits of anomalous oils), Moscow: Nedra Publ., 1972, 200 p.

8. Mustafayev S.D., Quyuların ştanqlı dərinlik nasos üsulu ilə istismarı. Monoqrafiya, Bakı-ELM Publ., 2010, 677 p.



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .