The purpose of carrying out various types of well interventions is to increase the share of profitable interventions and improving the economic efficiency of the interventions program as a whole. Changing the number of interventions has an impact on the share of profitable wells. In general, an increase in the number of well interventions leads to a decrease in the share of profitable wells, an increase in additional oil production and the total net present value (NPV) of the entire program. A decrease in the number of well interventions will lead to an increase in the share of wells that pay off, a decrease in additional oil production and the total NPV of the entire program. The share of profitable wells depends on the total number of interventions since when the number of well interventions is increased, candidate wells with lower planned initial incremental oil rates get accepted into the program. For such wells, the probability of obtaining lower additional oil production in the evaluation period increases, as well as the risk of the intervention becoming unprofitable increases. At the same time, normally a detailed program with the exact candidate wells is not available in long-term and medium-term planning. Therefore, changing the number of well interventions performed leads to difficulties in assessing the efficiency of these activities.
In this paper, an approach is proposed allowing to estimate the potential impact of reducing or increasing the number of well interventions on its success rate and economic efficiency without any information on specific candidate wells planned for the interventions, based on statistical data from previous years, such as the number of actual performed interventions by type, planned initial incremental oil rates for each well before the interventions, projected additional oil production and projected NPV figures for the period of evaluation for each well. The proposed approach is based on data from economic effectiveness reports on actual well interventions and historical data on the planned initial incremental oil rates from wells for various types of interventions, allowing to make informed decisions aimed at improving the efficiency of the implementation of the well intervention program, including redistribution of additional interventions between various assets with different projected intervention efficiency profiles.
References
1. Timonov A.V., Sergeychev A.V., Sudeev I.V. et al., A systematic approach to design of well intervention for the oil reservoir development optimization (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2010, no. 8, pp. 46–49.
2. Kharlamova D.I., Kharlamov K.A., Ganiev Sh.R. et al., Development of a smart tool for operational assessment of oil field development system effectiveness (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2022, no. 7, pp. 116–120, DOI: https://doi.org/10.24887/0028-2448-2022-7-116-120
3. Ramazanov R.R., Kharlamov K.A., Letko I.I., Martsenyuk R.A., Efficiency analysis of geological and technical measures (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2019, no. 6, pp. 62–65, DOI: https://doi.org/10.24887/0028-2448-2019-6-62-65
4. Azbukhanov A.F., Kostrigin I.V., Bondarenko K.A. et al., Selection of wells for hydraulic fracturing based on mathematical modeling using machine learning methods (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2019, no. 11, pp. 38–43, DOI: https://doi.org/10.24887/0028-2448-2019-11-38-42