Modern well-testing equipment allows to record changing of bottomhole pressure with a resolution of 1 per second and sensibility less than 0.0001 MPa. The definition of gauges, using for recording a build-up curve, gives to modern engineers an opportunity of identification such a difficult filtration models as dual porosity, linear/radial composite and so on. However, along with increasing accuracy of high-sensitive gauges (strain gauges of quartz or sapphire type) records of build-ups there is an appearance of derivative bottomhole pressure noisiness. And a final interpretation of well-tests depends on quality of a derivative. Currently available noise reduction tools are based on linear or logarithmic filtering. The basic principle of the filtering is excepting current amount of pressure points of each logarithmic cycle. That method could be called a necessary measure, because excepting a part of records leads to a simplification of real difficult dinamics, and the real case could have some artifacts. There are no points of view in domestic and foreign literature, covering such issues as a nature of noisiness and its correlations with different technological factors. The understanding of these issues will make us able to adjust well testing and make some technical preparations even at a planning stage.
This paper is considering depression drainage mode influence on noisiness of derivatives. According to the authors, it is possible to decrease negative effects using some methods, consisting of the right choice of depression mode before a pressure transient test.
References
1. Houzé O., Viturat D., Fjaere O.S., The theory and practice of pressure transient and production analysis & The use of data from permanent downhole gauges, URL: https://www.kappaeng.com/documents/flip/dda51001/files/assets/basic-html/page-1.html
2. Deeva T.A., Kamartdinov M.R., Kulagina T.E., Mangazeev P.V., Gidrodinamicheskie issledovaniya skvazhin: analiz i interpretatsiya da
nnykh (Well test: analysis and interpretation of data), Tomsk: Publ. of TPU, 2009, 243 p.