Researching effect of biocontamination of pumped light oil products on corrosion resistance of the pipe steel and influence of corrosion process on fuel quality

UDK: 622.692.4.076:620.193/.197
DOI: 10.24887/0028-2448-2020-10-94-98
Key words: corrosion resistance, jet fuel, diesel, produced water, in-line resinous deposits, biocontamination, fuel quality
Authors: L.P. Hudyakova, A.A. Shestakov, R.A. Harisov, I.R. Farhetdinov, G.P. Khovanov, F.V. Timofeev, A.A. Novikov. (The Pipeline Transport Institute LLC, RF, Moscow, Ufa)

The article considers a comprehensive study of an impact of petroleum products (aviation and diesel fuels), their mixtures, produced water and in-tube resinous deposits formed during the transport and storage of fuels, as well as their biocontamination on the corrosion resistance of pipe steel. The presence of even traces of water, mineral contamination in oil fuels and a favorable temperature (15°C and higher) allows various groups of microorganisms to develop actively. The ability of microorganisms to assimilate the hydrocarbons of fuel leads to a deterioration in the quality of the petroleum products themselves and the occurrence of problems during their storage, transportation and use, causing malfunction of the fuel system sensors, clogging of filters, damage to internal protective coatings and, as a result, corrosion of pipelines, tanks and equipment systems that use biocontaminated fuel.

An assessment of the microbial population in the investigated fuels, produced water and in sediments was carried out for the following representatives of microorganisms: SRB (sulfate-reducing bacteria), AB (aerobic bacteria), HOB (hydrocarbon-oxidizing bacteria), MG (microscopic fungi or micromycetes). As a result of the research, the influence of microbiological contamination and the presence of impurities in fuel on corrosion processes and the quality of fuels during their transportation and storage have been shown. It is almost impossible to minimize the risk of corrosive and bio-damage by removing water, since residual water, even in small quantities, provides a habitat in which microbial communities can develop. The presence of SRB, HOB and AB in the bottom water of the oil tanks was established in the amount of 102-106 cells per 1 ml of water, respectively. A particularly critical factor in terms of corrosion is a high content of SRB, which exceeds the level of occurrence of corrosion damage by a factor of a thousand. The presence of DRR in petroleum products (aviation and diesel fuels) in an amount exceeding 1000 CFU/ml is dangerous because during their growth and development in the above-mentioned media there is a gradual destruction of hydrocarbons, leading to the appearance of water-soluble acids in the fuel (pH = 4.56).References

1. Krivushina A.A., Mikromitsety v aviatsionnom toplive (Micromycetes in aviation fuel): thesis of candidate of biological science, Moscow, 2012.

2. Khudyakova L.P., Shestakov A.A., Farkhetdinov I.R., Shirokov A.V., Risk assessment of biocorrosion corrosion in underground steel structures (In Russ.), Nauka i tehnologii truboprovodnogo transporta nefti i nefteproduktov = Science & Technologies: Oil and Oil Products Pipeline Transportation, 2019, no. 9 (1), pp. 232–239.

3. Graef M.S., An analysis of microbial contamination in military aviation fuel systems, AFIT/GEE/ENV/03–10, Air Force Institute of Technology, 2003, URL:

https://ia803104.us.archive.org/26/items/DTIC_ADA415117/DTIC_ADA415117.pdf.

 4. Yampol'skaya T.D., Shakhalay T.V., Biodamages of combustive-lubricating materials in the conditions of northern regions (In Russ.), Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2010, V. 12, no. 1 (5), pp. 1250–1255.

5. Vasil'eva A.A., Chekunova L.N., Polyakova A.V., Effect of temperature on growth and viability of Hormonicus resinae and Philaphora sp. developing in aviation fuel (In Russ.), Mikologiya i fitopatologiya, 2009, V. 43, pp. 312–316.

6. Vigdorovich V.I., Romantsova S.V., Nagornov S.A., Oxidation and corrosion in the oil storage vessels (In Russ.), Vestnik Tambovskogo Universiteta. Ser. Estestvennye i Tekhnicheskie nauki, 2000, V. 5, no. 1, pp. 3–8.

7. Passman F.J., Microbial contamination and its control in fuel and fuel systems since 1980. A review, International Biodeterioration & Biodegradation, 2013, V. 81, pp. 88–104, https://doi.org/10.1016/j.ibiod.2012.08.002

8. Piskunov V.A., Zrelov V.N., Vliyanie topliv na nadezhnost' reaktivnykh dvigateley i samoletov. Khimmotologicheskaya nadezhnost' (The influence of fuels on the reliability of jet engines and aircraft. Shemotological reliability), Moscow: Mashinostroenie Publ., 1978, 270 p.

9. Litvinenko S.N., Zashchita nefteproduktov ot deystviya mikroorganizmov (Protection of petroleum products from the action of microorganisms), Moscow: Khimiya Publ., 1977, 144 p.

10. Dubovkin N.F., Malanicheva V.G., Massur Yu.P., Fedorov E.P., Fizikokhimicheskie i ekspluatatsionnye svoystva reaktivnykh topliv. Spravochnik (Physicochemical and operational properties of jet fuels), Moscow: Khimiya Publ., 1985, 240 p.

11. ShkIlniuk I., Boichenko S., Methodically organizational principles of biological stability providing of aviation fuels, Transactions of the institute of aviation, 2014, no. 4 (237), pp. 76–83.

12. Manual of methods for general bacteriology: edited by Gerhardt P., Publ. of American Society for Microbiology, 1981, 581 p.

13. Yampol'skaya T.D., Shakhalay T.V., Biodamages of combustive-lubricating materials in the conditions of northern regions (In Russ.), Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2010, V. 1, no. 1 (5), pp. 1250–1255.

14. Timofeev F.V., Ensuring the safety of the chemmotology "Technique-Fuel-Operation" system's functioning in the pipeline transport (In Russ.), Mir nefteproduktov. Vestnik neftyanykh kompaniy, 2019, no. 4, pp. 19–26.

15. Khotnichuk S.B. et al., Improvement of the quality assurance system for oil products to be transported by pipelines (In Russ.), Nauka i tehnologii truboprovodnogo transporta nefti i nefteproduktov = Science & Technologies: Oil and Oil Products Pipeline Transportation, 2017, V. 7, no. 5, pp. 88–96.

16. Bol'shakov G.F., Vosstanovlenie i kontrol' kachestva nefteproduktov (Recovery and quality control of petroleum products), Leningrad: Nedra Publ., 1974, 320 p.

The article considers a comprehensive study of an impact of petroleum products (aviation and diesel fuels), their mixtures, produced water and in-tube resinous deposits formed during the transport and storage of fuels, as well as their biocontamination on the corrosion resistance of pipe steel. The presence of even traces of water, mineral contamination in oil fuels and a favorable temperature (15°C and higher) allows various groups of microorganisms to develop actively. The ability of microorganisms to assimilate the hydrocarbons of fuel leads to a deterioration in the quality of the petroleum products themselves and the occurrence of problems during their storage, transportation and use, causing malfunction of the fuel system sensors, clogging of filters, damage to internal protective coatings and, as a result, corrosion of pipelines, tanks and equipment systems that use biocontaminated fuel.

An assessment of the microbial population in the investigated fuels, produced water and in sediments was carried out for the following representatives of microorganisms: SRB (sulfate-reducing bacteria), AB (aerobic bacteria), HOB (hydrocarbon-oxidizing bacteria), MG (microscopic fungi or micromycetes). As a result of the research, the influence of microbiological contamination and the presence of impurities in fuel on corrosion processes and the quality of fuels during their transportation and storage have been shown. It is almost impossible to minimize the risk of corrosive and bio-damage by removing water, since residual water, even in small quantities, provides a habitat in which microbial communities can develop. The presence of SRB, HOB and AB in the bottom water of the oil tanks was established in the amount of 102-106 cells per 1 ml of water, respectively. A particularly critical factor in terms of corrosion is a high content of SRB, which exceeds the level of occurrence of corrosion damage by a factor of a thousand. The presence of DRR in petroleum products (aviation and diesel fuels) in an amount exceeding 1000 CFU/ml is dangerous because during their growth and development in the above-mentioned media there is a gradual destruction of hydrocarbons, leading to the appearance of water-soluble acids in the fuel (pH = 4.56).References

1. Krivushina A.A., Mikromitsety v aviatsionnom toplive (Micromycetes in aviation fuel): thesis of candidate of biological science, Moscow, 2012.

2. Khudyakova L.P., Shestakov A.A., Farkhetdinov I.R., Shirokov A.V., Risk assessment of biocorrosion corrosion in underground steel structures (In Russ.), Nauka i tehnologii truboprovodnogo transporta nefti i nefteproduktov = Science & Technologies: Oil and Oil Products Pipeline Transportation, 2019, no. 9 (1), pp. 232–239.

3. Graef M.S., An analysis of microbial contamination in military aviation fuel systems, AFIT/GEE/ENV/03–10, Air Force Institute of Technology, 2003, URL:

https://ia803104.us.archive.org/26/items/DTIC_ADA415117/DTIC_ADA415117.pdf.

 4. Yampol'skaya T.D., Shakhalay T.V., Biodamages of combustive-lubricating materials in the conditions of northern regions (In Russ.), Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2010, V. 12, no. 1 (5), pp. 1250–1255.

5. Vasil'eva A.A., Chekunova L.N., Polyakova A.V., Effect of temperature on growth and viability of Hormonicus resinae and Philaphora sp. developing in aviation fuel (In Russ.), Mikologiya i fitopatologiya, 2009, V. 43, pp. 312–316.

6. Vigdorovich V.I., Romantsova S.V., Nagornov S.A., Oxidation and corrosion in the oil storage vessels (In Russ.), Vestnik Tambovskogo Universiteta. Ser. Estestvennye i Tekhnicheskie nauki, 2000, V. 5, no. 1, pp. 3–8.

7. Passman F.J., Microbial contamination and its control in fuel and fuel systems since 1980. A review, International Biodeterioration & Biodegradation, 2013, V. 81, pp. 88–104, https://doi.org/10.1016/j.ibiod.2012.08.002

8. Piskunov V.A., Zrelov V.N., Vliyanie topliv na nadezhnost' reaktivnykh dvigateley i samoletov. Khimmotologicheskaya nadezhnost' (The influence of fuels on the reliability of jet engines and aircraft. Shemotological reliability), Moscow: Mashinostroenie Publ., 1978, 270 p.

9. Litvinenko S.N., Zashchita nefteproduktov ot deystviya mikroorganizmov (Protection of petroleum products from the action of microorganisms), Moscow: Khimiya Publ., 1977, 144 p.

10. Dubovkin N.F., Malanicheva V.G., Massur Yu.P., Fedorov E.P., Fizikokhimicheskie i ekspluatatsionnye svoystva reaktivnykh topliv. Spravochnik (Physicochemical and operational properties of jet fuels), Moscow: Khimiya Publ., 1985, 240 p.

11. ShkIlniuk I., Boichenko S., Methodically organizational principles of biological stability providing of aviation fuels, Transactions of the institute of aviation, 2014, no. 4 (237), pp. 76–83.

12. Manual of methods for general bacteriology: edited by Gerhardt P., Publ. of American Society for Microbiology, 1981, 581 p.

13. Yampol'skaya T.D., Shakhalay T.V., Biodamages of combustive-lubricating materials in the conditions of northern regions (In Russ.), Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2010, V. 1, no. 1 (5), pp. 1250–1255.

14. Timofeev F.V., Ensuring the safety of the chemmotology "Technique-Fuel-Operation" system's functioning in the pipeline transport (In Russ.), Mir nefteproduktov. Vestnik neftyanykh kompaniy, 2019, no. 4, pp. 19–26.

15. Khotnichuk S.B. et al., Improvement of the quality assurance system for oil products to be transported by pipelines (In Russ.), Nauka i tehnologii truboprovodnogo transporta nefti i nefteproduktov = Science & Technologies: Oil and Oil Products Pipeline Transportation, 2017, V. 7, no. 5, pp. 88–96.

16. Bol'shakov G.F., Vosstanovlenie i kontrol' kachestva nefteproduktov (Recovery and quality control of petroleum products), Leningrad: Nedra Publ., 1974, 320 p.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

03.03.2021
25.02.2021
16.02.2021