Comparison of field-geophysical and tracer methods to control the inflow profile in horizontal wells with multistage hydraulic fracturing

UDK: 622.276.1/.4
DOI: 10.24887/0028-2448-2019-9-38-41
Key words: tracer studies, low permeability reservoir, horizontal wells, hydraulic fracturing
Authors: Z. Kaludzher (Rosneft Oil Company, RF, Moscow), K.V. Toropov (Rosneft Oil Company, RF, Moscow), R.R. Murtazin (RN-BashNIPIneft LLC, RF Ufa), A.V. Sergeychev (Rosneft Oil Company, RF, Moscow), A.G. Klimentev (Rosneft Oil Company, RF, Moscow), R.M. Tugushev (IGIRGI JSC, RF, Moscow), R.G. Hadiev (RN-Uganskneftegas, RF, Nefteyugansk)

Due to the intensive increase in the number of horizontal wells with multi-stage hydraulic fracturing, the need for studies of fluid inflow from each hydraulic fracture in horizontal wells also increases. This paper presents the experience of using liquid chemical tracers (markers) to control the profile of fluid flow in horizontal wells with multi-stage hydraulic fracturing. To solve this problem, geophysical research methods are most often used with registration of flow measurement, thermometry, moisture metering, etc. at different well operating modes. However, the use of geophysical research methods in horizontal wells with multistage hydraulic fracturing is associated with a number of drawbacks that significantly reduce the reliability of the studies. As an alternative to geophysical methods for studying the inflow profile in horizontal wells in the world, tracer methods of inflow studies that do not require stopping the well or changing operating modes are widely used. The development of this direction has led to the development of new technologies for the study of horizontal wells using various types of indicators.

In this paper, we compare the distribution of the fluid flow of hydraulic fractures by two different methods: liquid chemical tracers and geophysical instruments. The main technological limitations of research methods and their features are determined. The uniqueness of the work lies in the joint conduct of tracer and geophysical studies in each well. The analysis showed that the use of liquid chemical tracers is an alternative to the classical methods of PIP. Further development of tracer technologies is necessary in terms of reducing their cost and increasing the duration of the informative research period.

References

1. Zakharov V.P., Ismagilov T.A., Telin A.G., Silin M.A., Regulirovanie fil'tratsionnykh potokov vodoizoliruyushchimi tekhnologiyami pri razrabotke neftyanykh mestorozhdeniy (Regulation of filtration flows by waterproofing technologies in the development of oil fields), Moscow: Publ. of Gubkin University, 2010, 225 p.

2. Dulkarnaev M., Ovchinnikov K., Gur'yanov A., Anopov A., Malyavko E., The first comprehensive study of tracer-based technologies in reservoir conditions (In Russ.), SPE 192564-RU, 2018, https://doi.org/10.2118/192564-RU.

3. Mukhametshin I.R., Nukhaev M.T., Semikin D.A., Monitoring lateral wells with multi-stage fracturing using the chemical markers embedded in completion equipment (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2018, no. 3, pp. 46–49.

4. Panichelli P., Martínez J.R., Crespo P. et al., Advanced reservoir characterization in Vaca Muerta using chemical tracer technology, SPE 188923-MS, 2017, https://doi.org/10.2118/188923-MS.

5. Lal M.K., Singh A.K., Ezernack J., Spencer J., Advanced reservoir characterization in Antelope Shale using chemical tracer technology, SPE 184819-MS, 2017, https://doi.org/10.2118/184819-MS.

6. Sokolovskiy E.V., Solov'ev G.B., Trenchikov Yu.I., Indikatornye metody izucheniya neftegazonosnykh plastov (Indicator methods for the study of oil and gas reservoirs), Moscow: Nedra Publ., 1986, 157 p.


Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .