Application of lithofacies modeling for petroleum development of Bashkirian carbonates at the Borovskoye field

UDK: 622.276.1/.4.001.57
DOI: 10.24887/0028-2448-2019-3-62-65
Key words: multizone oil reservoir, inhomogeneity of reservoir, field development system, well logging, localization of residual recoverable reserves, carbonate reservoir, lateral drilling, multistage hydraulic fracturing
Authors: A.E. Manasyan (Samaraneftegas JSC, RF, Samara), A.A. Amirov (Samaraneftegas JSC, RF, Samara), N.V. Fedorenko (RN-BashNIPIneft LLC, RF, Ufa), A.M. Vagizov (RN-BashNIPIneft LLC, RF, Ufa), N.D. Pozhitkov (RN-BashNIPIneft LLC, RF, Ufa), G.N. Agadullina (RN-BashNIPIneft LLC, RF, Ufa), D.R. Sadretdinov (RN-BashNIPIneft LLC, RF, Ufa), G.F. Kavieva (RN-BashNIPIneft LLC, RF, Ufa)

At the moment, hydrocarbons confined to carbonates are the target of increasing interest and are the drivers of oil production growth and maintenance. The involvement of carbonates into production requires the use of new approaches due to poor reservoir properties and complex geological structure. The article discusses the use of lithofacies modeling for carbonate development optimization in Borovskoye field, located in the Samara Region. Dividing reservoirs into petroclasses depending on petrophysical differences of voids is the new differentiated approach to geological modeling. The Borovskoye field is multihorizon and multi-domed. The main productive formation is Bashkirian stage (reservoir A4), which contains most of residual recoverable reserves. The reservoir A4 is defined by poor PVT characteristics and poor continuity of rocks in terms of thickness, quality and also lateral continuity. The results of the research work on creating a unified petrophysical model of Bashkir carbonates in Bashkortostan oilfields were used as a basis for refining the petrophysical dependencies and constants of A4 reservoir. As a result three petrophysical types of A4 reservoir were distinguished: fracture-porous, vugular-porous and porous. This division of A4 reservoir into petroclasses is confirmed by the differences in flow rates and cumulative oil production of wells. The choice of the optimal production case of A4 reservoir of Borovskoye field was based on reservoir simulation model adapted to the production history. Based on the concentration of the main part of residual recoverable reserves and appropriate petrophysical reservoir type the pilot area of the field was chosen for future expansion on the field.

References

1. Shambarova L.I., Pereschet zapasov nefti i rastvorennogo gaza Borovskogo neftyanogo mestorozhdeniya Samarskoy oblasti (vklyuchaya Nizhnee mestorozhdenie) (Recalculation of oil and dissolved gas reserves of the Borovskoye oil field in the Samara region (including the Nizhnee field)), Samara: Publ. of SamaraNIPIneftʹ, 2018, 317 p.

2. Aleksandrova E.A., Ivanova A.Yu., Tekhnologicheskiy proekt razrabotki Borovskogo neftyanogo mestorozhdeniya Samarskoy oblasti AO “Samaraneftegaz” (Technological project for the development of the Borovskoye oil field in the Samara region of Samaraneftegaz JSC), Samara: Publ. of SamaraNIPIneftʹ, 2018, 654 p.

3. Burikova T.V., Savel'eva E.N., Husainova A.M. et al., Lithological and petrophysical characterization of Middle Carboniferous carbonates (a case study from north-western oil fields of Bashkortostan) (In Russ.), Neftjanoe hozjajstvo = Oil Industry, 2017, no. 10, pp. 18–21.


Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .