Identification of second hydraulic fracture direction using decline-analysis and geomechanical simulation using RN-KIN software

UDK: 622.276.66.044.58
DOI: 10.24887/0028-2448-2018-11-114-118
Key words: well testing, decline-analysis, low permeable reservoir, hydraulic fracturing, refracturing, modeling, geomechanical simulator, hydraulic fracture reorientation
Authors: G.F. Asalkhuzina (RN-UfaNIPIneft LLC, RF, Ufa), A.Ya. Davletbaev (RN-UfaNIPIneft LLC, RF, Ufa), A.I. Fedorov (RN-UfaNIPIneft LLC, RF, Ufa), A.R. Yuldasheva (RN-UfaNIPIneft LLC, RF, Ufa), А.N. Efremov (RN-Yuganskneftegas LLC, RF, Nefteugansk), D.А. Kravets (RN-Yuganskneftegas LLC, RF, Nefteugansk), D.Z. Ishkin (Bashkir State University, RF, Ufa)

Second fracturing operation (re-fracturing) is often used in producing wells to improve well productivity that reduces with time. In some cases well rate/pressure performance analysis indicates a significant improvement of well productivity after re-fracturing. A change of a fracture orientation (re-orientation) while re-fracturing is one of possible reasons of productivity improvement. It is important to find a method to predict the second fracture direction and to find conditions of new fracture creation. This method would help one to select appropriate wells for re-fracturing. This paper discusses two cases of numerical modeling of well rate and pressure performance for pre- and post-refracturing time periods. Case one is when properties of the "old" fracture improved. Case two is when fracture re-orientation occurs after hydraulic fracturing operation, i.e., when the two (the "old" one and the "new" one) perpendicular fractures occur. Using results of numerical modeling, it is possible to estimate the contribution of both these two cases to the well inflow. Further, the production pressure analysis for re-fractured wells was made using field data and conclusions about hydraulic fracture re-orientation were made. The occurrence of fracture re-orientation in all considered examples was checked using the RN-KIN geomechanical simulation software. Also the sensitivity analysis for various reservoir parameters was performed in order to understand the limits of the fracture re-orientation technology. This analysis allowed us to identify individual sections of the field and wells in pattern elements where fracture re-orientation after re-fracturing is most probable.

References

1. Baykov V.A., Rabtsevich S.A., Kostrigin I.V., Sergeychev A.V., Monitoring of field development using a hierarchy of models in software package RN-KIN (In Russ.), Nauchno-tekhnicheskiy vestnik “NK “Rosneftʹ”, 2014, no. 2, pp. 14–17.

2. Asalkhuzina G.F., Davletbaev A.YA., Khabibullin I.L., Modeling reservoir pressure difference between injection and production wells in low permeable reservoirs (In Russ.), Vestnik Bashkirskogo universiteta, 2016, V. 21, no. 3, pp. 537–544.

3. Afanasʹev I.S., Antonenko I.S., Antonenko D.A. et al., Results of massed fracturing introduction at Priobskoye deposit (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2005, no. 8, pp. 62–64.

4. Davletbaev A.Ya., Baykov V.A., Ozkan EH. et al., Multi-layer steady-state injection test with higher bottomhole pressure than the formation fracturing pressure (In Russ.), SPE 136199-RU, 2010.

5. Baykov V.A., Davletbaev A.YA., Ivashchenko D.S., Simulation of liquid influx in low-permeability reservoir wells taking into account non-linear filtration (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2014, no. 11, pp. 54–58.

6. Baryshnikov A.V., Sidorenko V.V., Kokurina V.V. et al., Low permeable collectors with fracturing: the interpretation of hydrodynamic research based on the analysis of well’s yield reduction (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2010, no. 12, pp. 42–45.

7. Kremenetskiy M.I., Ipatov A.I., The longterm monitoring of resevoir data as significant direction of contemporary welltest analysis development (In Russ.), Inzhenernaya praktika, 2012, no. 9, pp. 4–8.

8. Ishkin D.Z., Nuriev R.I., Davletbaev A.Ya. et al., Decline-analysis/“short” build-up welltest analysis of low permeability gas reservoir (In Russ.), SPE 181974-RU, 2016.

9. Latypov I.D., Borisov G.A., Khaydar A.M. et al., Reorientation refracturing on RN-Yuganskneftegaz LLC oilfields (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2011, no. 6, pp. 34–38.

10. Davletbaev A.YA., Mukhametova Z.S., Simulation of the filtration in a low-permeability pool with two perpendicular technogenic hydraulic fractures (In Russ.), Inzhenerno-fizicheskiy zhurnal = Journal of Engineering Physics and Thermophysics, 2017, V. 90, no. 3, pp. 632–639, http://dx.doi.org/10.1007/s10891-017-1605-y.

11. Latypov I.D., Fedorov A.I., Nikitin A.N., Research of reorientation refracturing (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2013, no. 10, pp. 74–78.

12. Davletova A.R., Bikbulatova G.R., Fedorov A.I., Davletbaev A.YA., Geomechanical simulation of hydraulic fractures growth direction and trajectory in the low permeability reservoirs development (in Russ.), Nauchno-tekhnicheskiy vestnik “NK “Rosneftʹ”, 2014, no. 1, pp. 40–43.

13. Fedorov A.I., Davletova A.R., Reservoir stress state simulator for determining of fracture growth direction (In Russ.), Geofizicheskie issledovaniya = Geophysical research, 2014, V. 15, no. 1, pp. 15–26.

14. Kokurina V.V., Kremenetskiy M.I., Krichevskiy V.M., Control of the efficiency of repeated hydraulic fracturing basing on the results of hydrodynamic surveys (In Russ.), Karotazhnik, 2013, V. 227, pp. 76–101.

15. Blasingame T.A., Johnston J.L., Lee W.J., Type curve analysis using the pressure integral method, SPE 18799-MS, 2018.



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .