This work considers the approach to the creation of a conceptual geological-simulation model with regard to the facies features of the Achimov deposits. The method of creating a geological 3D model consists in the step-by-step analysis of regional geology data, stratigraphic, seismic-facies, lithologic-facial and petrophysical analysis, and next cluster analysis for binding wells without cores to facies groups based on well logs. Within the framework of simulation modeling, the choice of optimal development systems was made in accordance with the changing parameters of the field for various realizations of the geological model. Different methods of well completion, grid density, operation state of injection wells are considered, and development systems that are best for different facial environments are justified. A sensitivity analysis was performed and showed the sustainability of design solutions to such changing factors as the petrophysical model, the formation fluid model, the success of the fracturing, and allowed to identify the main project risks, as well as assess the magnitude of their impact on technological and economic performance indicators. The suggested methodical approach is especially relevant for Achimov deposits due to the complexity of forecasting, high degree of variability and poor knowledge of these deposits.
References
1. Alekhina M.S., Cherkas E.O., Zhukovskaya E.A. et al., Metodika sozdaniya fatsial'no-orientirovannoy kontseptual'noy modeli achimovskikh otlozheniy Salymskoy gruppy mestorozhdeniy (The method of creating a facies-oriented conceptual model of the Achimov deposits of the Salym group of deposits), Collected papers “Sovremennye problemy sedimentologii v neftegazovom inzhiniringe” (Modern problems of sedimentology in oil and gas engineering), Proceedings of 3rd All-Russian Scientific and Practical Sedimentology Conference, 10–12 April 2017, Tomsk: Publ. of TsPPS ND, 2017, pp. 215–222.
2. Shpil'man A.V., Myasnikova G.P., Plavnik G.I., Atlas – geologicheskoe stroenie i neftegazonosnost' neokomskogo kompleksa Khanty-Mansiyskogo avtonomnogo okruga – Yugry (Atlas - geology and oil and gas bearing of the Neocomian complex of the Khanty-Mansi Autonomous District - Yugra), Khanty-Mansiysk: IzdatNaukServis Publ., 2007, 191 p.
3. Syngaevskiy P.E., Khafizov S.F., Shimanskiy V.V., Glubokovodnye konusy vynosa i turbidity. Modeli, tsiklostratigrafiya i primenenie rasshirennogo kompleksa GIS (Deep-water cones and turbidites. Models, cyclostratigraphy and application of an extended complex of well logging), Moscow - Izhevsk: Institute of Computer Research, 2015, 479 p.
4. Belyakov E.O., Frantsuzov S.E., Mukhidinov Sh.V. et al., Probabilistic model of the distribution of rocks pore space fluid saturation as a base of specification of petrophysical models of reservoir properties (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2013, no. 12, pp. 48–50.
5. Naugol'nov M.V., Teplyakov N.F., Pislegin M.N., Borodkin A.A., Development of probabilistic model for technical and economics evaluation of oil field on depletion (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2016, no. 2, pp. 52–54.
6. Klimov V.Yu., Choice of stable development system - way to improve asset value (In Russ.), PROneft'. Professional'no o nefti, 2017, no. 1, pp. 60–66.