Petrography and clay mineralogy of anomaly luminescent layers in Bazhenov suite of Western Siberia sedimentary basin

UDK: 552.52:622.276
DOI: 10.24887/0028-2448-2018-2-36-40
Key words: Bazhenov formation, luminescence, illite – tobelite – smectite mixed-layers, pyroclastic, nitrogen
Authors: M.V. Shaldybin (TomskNIPIneft JSC, RF, Tomsk; Tomsk Polytechnic University, RF, Tomsk), V.V. Krupskaya (Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of RAS, RF, Moscow; Lomonosov Moscow State University, RF, Moscow), A.V. Glotov (TomskNIPIneft JSC, RF, Tomsk), O.V. Dorjieva (Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of RAS, RF, Moscow; (Geological Institute of RAS, RF, Moscow), I.V. Goncharov (TomskNIPIneft JSC, RF, Tomsk; Tomsk Polytechnic University, RF, Tomsk), V.V. Samoilenko (TomskNIPIneft JSC, RF, Tomsk), E.S. Deeva (TomskNIPIneft JSC, RF, Tomsk), Yu.M. Lopushnyak (Tomsk State University, RF, Tomsk), O.V. Bether (Tomsk State University, RF, Tomsk), S.V. Zakusin (Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of RAS, RF, Moscow; Lomonosov Moscow State University, RF, Moscow)

Abnormally luminescing thin layers (ALTL) in sediments of the Bazhenov Formation in limits of the West Siberia petroliferous basin were investigated which were discovered on the territory of Tomsk and Khanty-Mansiysk autonomous district. Investigations of mineral composition of this luminescent layers have shown that they composed mainly by clayey phases with some admixtures of terrigenous (quartz, feldspars) and other neogenic minerals, along with thin section research have shown the occurrence of mineral components and textural and structural features peculiar to the tuff rocks. Searching in the more detail manner of the clay fraction in the ALTL by XRD and IR spectroscopy methods has proved this assumption. Main clay minerals of ALTL are kaolinite and illite, which has occurred in the result of secondary alteration of pyroclastic components in the volcanic tuff rocks analogically tonsteins in the coal beds. But under dominant role of the kaolinite phase the illite/tobelite/smectite mixed-layered mineral compounds firstly have discovered in the Bazhenov shales. ALTL are devoid by kerogen and have not the character composition for Bazhenov shales and having the significant amounts of nitrogen in the same time. Assuming that initially these layers had volcanic origin and then have been transformed mainly into clay minerals consequently of katagenetic alteration of pyroclastic and volcanic material in the presence of high amount of kerogen. The illite/tobelite/smectite mixed-layered mineral with high content of nitrogen-containing compounds firstly discovered in Bazhenov Formation can be characterized as the mineral-indicator for ‘black shales’ rocks.

References

1. Krupskaya V.V., Krylov A.A., Garshev A.V., Sokolov V.N., Clay minerals-indicators of oil and gas potential of the Cretaceous rocks of the Arctic basin (In Russ.), Estestvennye i tekhnicheskie nauki = Natural and technical sciences, 2009, no. 3, pp. 171–174.

2. Drits V.A., Lindgreen H., Sakharov B.A. et al., Tobelitization of smectite during oil generation in oil-source shales. Application to North Sea illite-tobelite-smectite-vermiculite, Clays and Clay Minerals, 2002, V. 50, pp. 82–98.

3. Higashi S. Tobelite, A new ammonium dioctahedral mica, Mineral, 1982, no. 11, pp. 138–146.

4. Shaldybin M.V., Lopushnyak Y.M., Goncharov I.V. et al., The mineralogy of the clayey-silty siliceous rocks in the Bazhenov shale formation (Upper Jurassic) in the west Siberian Basin, Russia: The role of diagenesis and possible implications for their exploitation as an unconventional hydrocarbon reservoir, Applied Clay Science, 2017, V. 136, pp. 75–89.

5. Drits V.A., Lindgreen H., Sakharov B.A. et al., Formation and transformation of mixed-layer minerals by Tertiary intrusives in Cretaceous mudstones, West Greenland, Clays and Clay Minerals, 2007, V. 55, pp. 260–283.

6. Madejova J., Komadel P., Information available from infrared spectra of the fine fractions of bentonites, In: The Application of vibrational spectroscopy to clay minerals and layered double hydroxides: edited by Kloprogge J.Th., CMS Workshop Lectures, 2005, V. 13, pp. 65–98.

7. Juster T.C., Brown P.E., Bailey S.W., NH4-bearing illite in very low grade metamorphic rocks associated with coal, northeastern Pennsylvania, American Mineralogist, 1987, V. 72, pp. 555–565.

8. Dai Shifeng, Xie Panpan, Jia Shaohui et al., Enrichment of U-Re-V-Cr-Se and rare Earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data, Ore Geology Reviews, 2017, V. 80, pp. 1–17.

9. Van A.V., Mesozoic-Paleogene volcanism in the West Siberian Lowland (In Russ.), Doklady AN SSR, 1973, V. 210, no. 5, pp. 1156–1159.

10. Panchenko I.V., Kamzolkin V.A., Latyshev A.V., Sobolev I.D., Tufy i tuffity v bazhenovskom gorizonte (Zapadnaya Sibir') (Tuffs and tuffites in the Bazhenov horizon (Western Siberia)), Collected papers “Evolyutsiya osadochnykh protsessov v istorii Zemli” (Evolution of sedimentary processes in the history of the Earth), Proceedings of 8th the All-Russian Lithological Conference, Moscow, 27-30 October 2015, Part II, Moscow: Publ. of Gubkin Russian State University of Oil and Gas, 2015, pp. 258–261.

11. Spears D.A., The origin of tonsteins, an overview, and links with seatearths, fireclays and fragmental clay rocks, International Journal of Coal Geology, 2012, V. 94, pp. 22–31.

12. Arbuzov S.I., Mezhibor A.M., Spears D.A. et al., Nature of tonsteins in the Azeisk deposit of the Irkutsk Coal Basin (Siberia, Russia), International Journal of Coal Geology, 2016, V. 153, pp. 99–111.

13. Bogorodskaya L.I., Kontorovich A.E., Larichev A.I., Kerogen: metody izucheniya, geokhimicheskaya interpretatsiya (Kerogen: methods of study, geochemical interpretation), Novosibirsk: Publ. of SB of RAS, 2005, 254 p.

14. Goncharov I.V., Geokhimiya neftey Zapadnoy Sibiri (Geochemistry of oil in Western Siberia), Moscow: Nedra Publ., 1987, 181 p.

15. Jurisch S.A., Heim S., Krooss B.M., Littkea R., Systematics of pyrolytic gas (N2, CH4) liberation from sedimentary rocks: Contribution of organic and inorganic rock constituents, International Journal of Coal Geology, 2012, V. 89, pp. 95–107.

16. Zhang Huirong, Bai Jin, Kong Lingxue et al., Behavior of minerals in typical Shanxi coking coal during pyrolysis, Energy Fuels, 2015, V. 29, pp. 6912−6919, DOI: 0.1021/acs.energyfuels.5b01191.

17. Qiming Zheng, Qinfu Liu, Songlin Shi, Mineralogy and geochemistry of ammonian illite in intra-seam partings in Permo-Carboniferous coal of the Qinshui Coalfield, North China International, Journal of Coal Geology, 2016, V. 153, pp. 1–11.



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .