Логин:
Пароль:
Регистрация
Забыли свой пароль?

The technique of revealing the response during well interference test in the conditions of a high noise level of pressure and the presence of pressure trends

UDK: 622.276.5.001.5
DOI: 10.24887/0028-2448-2018-9-98-101
Key words: research of zones of high-output wells operations, interference test, the reacting (listening) well, a method for filtrational waves of pressure, an algorithm of processing of a signal, telemetric system
Authors: D.N. Maykov (INNC CJSC, RF, Izhevsk), R.S. Vasilyev (INNC CJSC, RF, Izhevsk), D.M. Vasilyev (INNC CJSC, RF, Izhevsk)

Now there is a problem of a research of zones of work of high-output wells, obtaining parameters of layer and the analysis of interference. Filtration parameters of layer are defined by means of standard well test, however the radius of researches allows to estimate only a near-well zone. Parameters of interference test space are necessary for creation of correct geological and hydrodynamic model. At traditional well interference test the stop of the reacting (listening) wells is necessary for reducing noise pollution of the measured bottomhole pressure that leads to considerable losses of oil production. Therefore the special relevance is acquired by a problem of development of the new technique of interference test which isn't demanding a stop of work of wells including listening.

Thus, the purpose of research is creation of the new technique without the need for reacting wells stopping during interference tests based on application of filtration waves of pressure. And the object of research is algorithms of signal processing during interference tests by method of filtration waves of pressure. Under interference tests by method of filtration waves of pressure detection and filtration of data in the conditions of a high noise level of pressure are required. Numerical modeling of signal (pressure) distribution between wells (interference tests) is carried out on the basis of the solution of the equations of hydraulics and filtration by methods of a diagonal pro-race. Methods of mathematical suppression of noise are used when processing a signal.

The numerical testing of the offered algorithm of signal processing during interference tests by method of filtration waves of pressure confirms it correctness. It is shown that use of the offered algorithm allows to find out indignation on the listening wells in the conditions of a high noise level and influence of wells of an environment that considerably expands scope of interference test with method of filtration waves of pressure. The technique has been verified on several numerical models, various on a configuration and the set filtration parameters.

References

1. Ovchinnikov M.N., Kushtanova G.G., Gavrilov A.G., Sudarev M.V., Filtrational pressure waves as a method of reservoir flow parameters investigation (In Russ.), Elektronnyy nauchnyy zhurnal “Neftegazovoe delo” = The electronic scientific journal Oil and Gas Business, 2015, no. 6, pp. 124–161.

2. Filippov A.I., Koval'skiy A.A., Akhmetova O.V., Sfericheskie fil'tratsionnye volny (Spherical filtration waves), Collected papers “Nauka vchera, segodnya, zavtra” (Science: yesterday, today, tomorrow), Proceedings of XI international scientific-practical conference, Novosibirsk, 2016, no. 11(33), pp. 124–128.

3. Shagapov V.Sh., Nagaeva Z.M., Harmonic pressure waves in fractures occurring in oil and gas strata (In Russ.), Inzhenerno-fizicheskiy zhurnal = Journal of Engineering Physics and Thermophysics, 2017, V. 90, no. 5, pp.1109–1117.

4. Ovchinnikov M., Kushtanova G., Effective matrix block sizes in percolation model and filtrational parameters of fractured environments, ARPN journal of engineering and applied sciences, 2016, V. 11, no. 13, pp. 8139-8143.

5. Patent no. 2584253 RF, Method for reactant-wave treatment of bottomhole formation zone with filtration pressure waves, Inventors: Agliullin M.M., Zakirov A.F., Sakhabutdinov R.Z., Mannapov I.K., Sterljadev Ju. R., Chupikova I.Z., Musabirov M.Kh., Jarullin R.R., Bikkulov A.A.

6. Kobyashev A.V., Volkov V.A., Study of the formation structure using hydro-listening on the example of the Suzun field (In Russ.), NEFT''. GAZ. NOVATsII, 2016, no. 2, pp. 38–41.

7. Ryazanova M.A., Samoylov V.V., Realizatsiya metoda fil'tratsionnykh voln davleniya dlya povysheniya KIN (Implementation of the filtration pressure wave method for increasing the oil recovery rate), Collected papers “Energiya molodezhi dlya neftegazovoy industrii” (Youth Energy for the Oil and Gas Industry), Proceedings of international scientific-practical conference of young scientists, Al'met'evsk: Publ. of ASPI, 2016, pp. 179–182.

8. Ifeachor E., Jervis B., Digital signal processing: A practical approach, Prentice Hall, 2001, 960 p.

9. Trusov A. V., Ovchinnikov M.N., Marfin E.A., Filtration waves of pressure distribution peculiarities and characteristics during local unbalanced models usage (In Russ.), Georesursy = Georesources, 2012, no. 6, V. 46, pp. 44–48.

10. Radzishevskiy A.Yu., Osnovy analogovogo i tsifrovogo zvuka (Basics of analog and digital sound), Moscow: Vil'yams Publ., 2006, 288 p.

11. Smith J.O.III., Spectral audio signal processing, W3K Publishing, 2011,674 p.

12. Anderson B.D.O., Moore J.B., Optimal filtering, Prentice-Hall, 1979

13. Kontorovich V.A, Lapkovskiy V.V., Lunev B.V., The model of forming the wedge-like Neocomian complex of the Western Siberian oil and gas province in view of isostasy (In Russ.), Geologiya nefti i gaza = Oil and gas geology, 2014, no. 1, pp. 65–72.

14. Stern H.P.E., Mahmou S.A., Communication systems: Analysis and design, Upper Saddle River, NJ: Pearson Prentice Hall, 2004, 552 p.

15. Smith S.W., Digital signal processing: A practical guide for engineers and scientists, 2003, 650 p.

16. Jonathan Y.S., Digital signal processing: A computer science perspective, 2000, 859 p.

17. Smith S.W., The scientist and engineer’s guide to digital signal processing, 1999, 650 p.

Now there is a problem of a research of zones of work of high-output wells, obtaining parameters of layer and the analysis of interference. Filtration parameters of layer are defined by means of standard well test, however the radius of researches allows to estimate only a near-well zone. Parameters of interference test space are necessary for creation of correct geological and hydrodynamic model. At traditional well interference test the stop of the reacting (listening) wells is necessary for reducing noise pollution of the measured bottomhole pressure that leads to considerable losses of oil production. Therefore the special relevance is acquired by a problem of development of the new technique of interference test which isn't demanding a stop of work of wells including listening.

Thus, the purpose of research is creation of the new technique without the need for reacting wells stopping during interference tests based on application of filtration waves of pressure. And the object of research is algorithms of signal processing during interference tests by method of filtration waves of pressure. Under interference tests by method of filtration waves of pressure detection and filtration of data in the conditions of a high noise level of pressure are required. Numerical modeling of signal (pressure) distribution between wells (interference tests) is carried out on the basis of the solution of the equations of hydraulics and filtration by methods of a diagonal pro-race. Methods of mathematical suppression of noise are used when processing a signal.

The numerical testing of the offered algorithm of signal processing during interference tests by method of filtration waves of pressure confirms it correctness. It is shown that use of the offered algorithm allows to find out indignation on the listening wells in the conditions of a high noise level and influence of wells of an environment that considerably expands scope of interference test with method of filtration waves of pressure. The technique has been verified on several numerical models, various on a configuration and the set filtration parameters.

References

1. Ovchinnikov M.N., Kushtanova G.G., Gavrilov A.G., Sudarev M.V., Filtrational pressure waves as a method of reservoir flow parameters investigation (In Russ.), Elektronnyy nauchnyy zhurnal “Neftegazovoe delo” = The electronic scientific journal Oil and Gas Business, 2015, no. 6, pp. 124–161.

2. Filippov A.I., Koval'skiy A.A., Akhmetova O.V., Sfericheskie fil'tratsionnye volny (Spherical filtration waves), Collected papers “Nauka vchera, segodnya, zavtra” (Science: yesterday, today, tomorrow), Proceedings of XI international scientific-practical conference, Novosibirsk, 2016, no. 11(33), pp. 124–128.

3. Shagapov V.Sh., Nagaeva Z.M., Harmonic pressure waves in fractures occurring in oil and gas strata (In Russ.), Inzhenerno-fizicheskiy zhurnal = Journal of Engineering Physics and Thermophysics, 2017, V. 90, no. 5, pp.1109–1117.

4. Ovchinnikov M., Kushtanova G., Effective matrix block sizes in percolation model and filtrational parameters of fractured environments, ARPN journal of engineering and applied sciences, 2016, V. 11, no. 13, pp. 8139-8143.

5. Patent no. 2584253 RF, Method for reactant-wave treatment of bottomhole formation zone with filtration pressure waves, Inventors: Agliullin M.M., Zakirov A.F., Sakhabutdinov R.Z., Mannapov I.K., Sterljadev Ju. R., Chupikova I.Z., Musabirov M.Kh., Jarullin R.R., Bikkulov A.A.

6. Kobyashev A.V., Volkov V.A., Study of the formation structure using hydro-listening on the example of the Suzun field (In Russ.), NEFT''. GAZ. NOVATsII, 2016, no. 2, pp. 38–41.

7. Ryazanova M.A., Samoylov V.V., Realizatsiya metoda fil'tratsionnykh voln davleniya dlya povysheniya KIN (Implementation of the filtration pressure wave method for increasing the oil recovery rate), Collected papers “Energiya molodezhi dlya neftegazovoy industrii” (Youth Energy for the Oil and Gas Industry), Proceedings of international scientific-practical conference of young scientists, Al'met'evsk: Publ. of ASPI, 2016, pp. 179–182.

8. Ifeachor E., Jervis B., Digital signal processing: A practical approach, Prentice Hall, 2001, 960 p.

9. Trusov A. V., Ovchinnikov M.N., Marfin E.A., Filtration waves of pressure distribution peculiarities and characteristics during local unbalanced models usage (In Russ.), Georesursy = Georesources, 2012, no. 6, V. 46, pp. 44–48.

10. Radzishevskiy A.Yu., Osnovy analogovogo i tsifrovogo zvuka (Basics of analog and digital sound), Moscow: Vil'yams Publ., 2006, 288 p.

11. Smith J.O.III., Spectral audio signal processing, W3K Publishing, 2011,674 p.

12. Anderson B.D.O., Moore J.B., Optimal filtering, Prentice-Hall, 1979

13. Kontorovich V.A, Lapkovskiy V.V., Lunev B.V., The model of forming the wedge-like Neocomian complex of the Western Siberian oil and gas province in view of isostasy (In Russ.), Geologiya nefti i gaza = Oil and gas geology, 2014, no. 1, pp. 65–72.

14. Stern H.P.E., Mahmou S.A., Communication systems: Analysis and design, Upper Saddle River, NJ: Pearson Prentice Hall, 2004, 552 p.

15. Smith S.W., Digital signal processing: A practical guide for engineers and scientists, 2003, 650 p.

16. Jonathan Y.S., Digital signal processing: A computer science perspective, 2000, 859 p.

17. Smith S.W., The scientist and engineer’s guide to digital signal processing, 1999, 650 p.



Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

15.10.2019
08.10.2019
04.10.2019
SPE 2019