Results and prospects of application of deposit and gel forming compositions for enhancing oil recovery of AC4 -8 layer of Fedorovskoye field

Authors: F.Yu. Aldakimov (Surgutneftegas OJSC, RF, Surgut), S.V. Gusev, V.Yu. Ogoreltsev, E.O. Grebyonkina (Tyumen Branch of SurgutNIPIneft, RF, Tyumen)

Key words: flow deviation technology, enhanced oil recovery, deposit and gel forming composition.

Article is devoted to the use of physical and chemical methods of enhanced oil recovery for the AC4 -8 layer of Fedorovskoye field of Surgutneftegas OJSC by the example of deposit and gel forming pumping technology. The current state of implementation of deposit and gel forming pumping technology, aimed at sweep efficiency increasing, is analyzed, the effectiveness of its technological applications in 2008 - 2012 is evaluated. It is noted that the current efficiency of the deposit and gel forming pumping technology is higher than efficiency of base technologies. Distinctive features of the dynamics of the deposit and gel forming pumping technology efficiency are revealed and the time is determined, after which the efficiency reaches a maximum level at 5-6 months after treatment beginning, indicating on prolonged mechanism of its action on a layer. Efficiency of technology increases significantly due to the optimization of the specific volumes of pumping. With an increase in the specific volume of pumping up to 600-800 m3 per rig-up the specific efficiency can be increased to 3,500 t per rig-up with a reaction duration of at least 2 years. The deposit and gel forming pumping technology can be successfully applied to the layers with reserve recovery, close to the limit value at waterflooding and the current watering more than 95 %.

References
1. Koval' Ya.G., Gusev S.V., Narozhnyy O.G. et al., Collected papers “Osnovnye
napravleniya nauchno-issledovatel'skikh rabot v neftyanoy promyshlennosti Zapadnoy Sibiri” (Main directions of research work in the oil industry in West Siberia), Tyumen': Publ. of SibNIINP, 2002, pp. 88–95.
2. Sonich V.P., Sedach V.F., Misharin V.A., Bulatov R.A., Interval, 2001, no. 10, pp. 14–27. 

Key words: flow deviation technology, enhanced oil recovery, deposit and gel forming composition.

Article is devoted to the use of physical and chemical methods of enhanced oil recovery for the AC4 -8 layer of Fedorovskoye field of Surgutneftegas OJSC by the example of deposit and gel forming pumping technology. The current state of implementation of deposit and gel forming pumping technology, aimed at sweep efficiency increasing, is analyzed, the effectiveness of its technological applications in 2008 - 2012 is evaluated. It is noted that the current efficiency of the deposit and gel forming pumping technology is higher than efficiency of base technologies. Distinctive features of the dynamics of the deposit and gel forming pumping technology efficiency are revealed and the time is determined, after which the efficiency reaches a maximum level at 5-6 months after treatment beginning, indicating on prolonged mechanism of its action on a layer. Efficiency of technology increases significantly due to the optimization of the specific volumes of pumping. With an increase in the specific volume of pumping up to 600-800 m3 per rig-up the specific efficiency can be increased to 3,500 t per rig-up with a reaction duration of at least 2 years. The deposit and gel forming pumping technology can be successfully applied to the layers with reserve recovery, close to the limit value at waterflooding and the current watering more than 95 %.

References
1. Koval' Ya.G., Gusev S.V., Narozhnyy O.G. et al., Collected papers “Osnovnye
napravleniya nauchno-issledovatel'skikh rabot v neftyanoy promyshlennosti Zapadnoy Sibiri” (Main directions of research work in the oil industry in West Siberia), Tyumen': Publ. of SibNIINP, 2002, pp. 88–95.
2. Sonich V.P., Sedach V.F., Misharin V.A., Bulatov R.A., Interval, 2001, no. 10, pp. 14–27. 


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

11.10.2021
07.10.2021
29.09.2021
Конкурс на соискание молодежной премии имени академика И.М. Губкина