Testing of auto hydraulic-fracturing growth of the linear oilfield development system of Priobskoye oil field

Authors: V.V. Maltsev, R.N. Asmandiyarov (RN-Yuganskneftegas LLC, RF, Nefteyugansk)V.A. Baikov, T.S. Usmanov, A.Ya. Davletbaev (RN-UfaNIPIneft LLC, RF, Ufa)

Key words: interference test, hydraulically fractured wells, auto hydraulic fracturing, active and observation wells.

This paper discuses result of field case of interference test with spontaneous development of fracture in the injection wells when the bottomhole pressure is higher than the formation fracturing pressures. Within 3 months of water injection growth of fracture length ~ 1000m. A numerical model was used to interpret the results of field case and estimated fracture conductivity.

References

1. Baykov V.A., Zhdanov R.M., Mullagaliev T.I., Usmanov T.S., Elektronnyy nauchnyy zhurnal “Neftegazovoe delo” - The electronic scientific journal Oil and Gas Business, 2011, no. 1, pp. 84-98. URL: http://www.ogbus.ru/authors/Baikov/Baikov_2.pdf

2. Afanas'eva A.V., Gorbunov A.T., Shustef I.N. Zavodnenie neftyanykh mestorozhdeniy pri vysokikh davleniya nagnetaniya (Water flooding of oil fields under high injection pressure), Moscow: Nedra Publ., 1975, 208 p.

3. Sæby J., Pjømdal H.P., Van den Hoek P., Managed induced fracturing improves waterflood performance in South Oman, IPTC 10843, 2005.

4. Chavez J.C., Carruthers J., McCurdy P., Water flooding efficiency in a scenario of multiple induced fractures, an applied geomechanical study, SPE 97526, 2005.

5. Van den Hoek P.J., Volchkov D., Burgos G., Masfry R.A., Application of new fall-off test interpretation methodology to fractured water injection wells offshore Sakhalin, SPE 102304, 2006.

6. Hustedt B., Zwarts D., Bjoerndal H.-P., Masfry R., van den Hoek P.J., Induced fracturing in reservoir simulation: application of a new coupled simulator to waterflooding field examples, SPE 102467, 2006.

7. Van den Hoek P.J., Hustedt B., Sobera M., Mahani H., Masfry R.A., Snippe J., Zwarts D., Danymic induced fractures in waterfloods and EOR, SPE 115204, 2008.

8. Santarelli F.J., Havmøller O., Naumann M. Geomechanical aspects of 15 years water injection on a field complex: an analysis of the past to plan the future, SPE 112944, 2008.

9. Davletbaev A., Baikov V., Ozkan E., Garipov T., Usmanov T., Asmandiyarov R., Slabetskiy A., Nazargalin E., Multi-layer steady-state injection test with higher bottomhole pressure than the formation fracturing pressure, SPE 136199, 2010.

10. Khasanov M.M., Krasnov V.A., Musabirov T.R., Mukhamedshin R.K., Neftyanoe khozyaystvo – Oil Industry, 2009, no. 2, pp. 92-96

11. Cinco-Ley H., Meng H.-Z., Pressure transient analysis of wells with finite conductivity vertical fractures in double porosity reservoirs, SPE 18172, 1988, pp. 645 – 660.

Key words: interference test, hydraulically fractured wells, auto hydraulic fracturing, active and observation wells.

This paper discuses result of field case of interference test with spontaneous development of fracture in the injection wells when the bottomhole pressure is higher than the formation fracturing pressures. Within 3 months of water injection growth of fracture length ~ 1000m. A numerical model was used to interpret the results of field case and estimated fracture conductivity.

References

1. Baykov V.A., Zhdanov R.M., Mullagaliev T.I., Usmanov T.S., Elektronnyy nauchnyy zhurnal “Neftegazovoe delo” - The electronic scientific journal Oil and Gas Business, 2011, no. 1, pp. 84-98. URL: http://www.ogbus.ru/authors/Baikov/Baikov_2.pdf

2. Afanas'eva A.V., Gorbunov A.T., Shustef I.N. Zavodnenie neftyanykh mestorozhdeniy pri vysokikh davleniya nagnetaniya (Water flooding of oil fields under high injection pressure), Moscow: Nedra Publ., 1975, 208 p.

3. Sæby J., Pjømdal H.P., Van den Hoek P., Managed induced fracturing improves waterflood performance in South Oman, IPTC 10843, 2005.

4. Chavez J.C., Carruthers J., McCurdy P., Water flooding efficiency in a scenario of multiple induced fractures, an applied geomechanical study, SPE 97526, 2005.

5. Van den Hoek P.J., Volchkov D., Burgos G., Masfry R.A., Application of new fall-off test interpretation methodology to fractured water injection wells offshore Sakhalin, SPE 102304, 2006.

6. Hustedt B., Zwarts D., Bjoerndal H.-P., Masfry R., van den Hoek P.J., Induced fracturing in reservoir simulation: application of a new coupled simulator to waterflooding field examples, SPE 102467, 2006.

7. Van den Hoek P.J., Hustedt B., Sobera M., Mahani H., Masfry R.A., Snippe J., Zwarts D., Danymic induced fractures in waterfloods and EOR, SPE 115204, 2008.

8. Santarelli F.J., Havmøller O., Naumann M. Geomechanical aspects of 15 years water injection on a field complex: an analysis of the past to plan the future, SPE 112944, 2008.

9. Davletbaev A., Baikov V., Ozkan E., Garipov T., Usmanov T., Asmandiyarov R., Slabetskiy A., Nazargalin E., Multi-layer steady-state injection test with higher bottomhole pressure than the formation fracturing pressure, SPE 136199, 2010.

10. Khasanov M.M., Krasnov V.A., Musabirov T.R., Mukhamedshin R.K., Neftyanoe khozyaystvo – Oil Industry, 2009, no. 2, pp. 92-96

11. Cinco-Ley H., Meng H.-Z., Pressure transient analysis of wells with finite conductivity vertical fractures in double porosity reservoirs, SPE 18172, 1988, pp. 645 – 660.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

24.11.2021
23.11.2021
02.11.2021
Конкурс на соискание молодежной премии имени академика И.М. Губкина