Based on the processing of field data, it was found that the Joule-Thomson effect occurs in the well - formation system, which can be used to prevent certain types of complications. The essence of the application of the Joule-Thomson effect in well drilling to control some processes is to compensate the pressure drop by backpressure due to the temperature difference between the well - formation system. At the same time, accidents caused by pressure drops in wells drilled from semi-submersible drilling rigs are also prevented. Development of optimal hydrodynamic and thermodynamic calculation methods, creation of thermohydrodynamic methods, hydrodynamic complexes can become one of the main directions of development of oil industry. The process of pressure drop compensation by back pressure can be implemented in various ways. Nevertheless, the best method, according to the author, is the method based on regulation of wellhead temperature of drilling mud. Regulation of the temperature of the drilling fluid is one of the effective methods of controlling technological processes during well drilling. Thus, the article shows that at a known temperature of the fluid leaving the well, the temperature of the fluid entering the well provides a thermodynamically normal drilling process. Based on data on temperature changes at the wellhead, it is possible to control the pressure drop in the well - reservoir system.
References
1. Movsumov A.A., Gidrodinamicheskie prichiny oslozhneniy pri provodke neftyanykh i gazovykh skvazhin (Hydrodynamic causes of complications during drilling of oil and gas wells), Baku: Azerneshr Publ., 1965, 230 p.
2. Səfərov Y.İ., Selection of technology for cleaning wells with holes before lowering the protective belts (In Azerb.), Azərbaycan Neft Təssərüfatı, 2007, no. 8, pp. 9–12.
3. Seid-Rza M.K., Tekhnologiya bureniya glubokikh skvazhin v oslozhnennykh usloviyakh (Technology for deep well drilling in difficult conditions), Baku: Azerneftneshr Publ., 1963, 208 p.
4. Proselkov Yu.M., Teploperedacha v skvazhinakh (Heat transfer in wells), Moscow: Nedra Publ., 1975, 223 p.
5. Shevtsov V.D., Preduprezhdenie gazoproyavleniy i vybrosov pri burenii glubokikh skvazhin (Prevention of gas manifestations and emissions during deep well drilling), Moscow: Nedra Publ., 1988, 198 p.
6. Alkhasov A.B., Teplofizika i teploperedacha v sistemakh geotermal'noy energetiki (Thermal physics and heat transfer in geothermal energy systems): thesis of doctor of technical science, Makhachkala, 2002, 276 p.
7. Baydyuk B.V., Mekhanicheskie svoystva gornykh porod pri vysokikh davleniyakh i temperaturakh (Mechanical properties of rocks at high pressures and temperatures), Moscow: Gostoptekhizdat Publ., 1963, 102 p.
8. Bulatov A.I., Ryabchenko V.I., Sibirko I.A., Sidorov N.A., Gazoproyavleniya v skvazhinakh i bor'ba s nimi (Gas manifestations in wells and their control), Moscow: Nedra Publ., 1969, 278 p.
9. Amirkhanov Kh.I., Suetnoy V.V., Levkovich R.A., Gairbekov Kh.A., Teplovoy rezhim osadochnykh tolshch (Thermal regime of sedimentary strata), Makhachkala: Dagestanskoe knizhnoe izdatel'stvo Publ., 1972, 230 p.
10. Aronov V.I., Three-dimensional approximation as a problem of processing, modeling and interpretation of geophysical and geological data (In Russ.), Geofizika, 2000, no. 4, pp, 21–25.
11. Aliev M.G., Baymurzaev A.L., Magomedov A.D., Evaluation of thermoelastic stresses of rocks in the walls of an uncased borehole (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 1966, no. 10, pp. 11–15.
12. Afanas'ev A.A., Zavisimost' temperatury tsirkulyatsionnogo potoka ot glubiny buryashcheysya skvazhiny (Dependence of the temperature of the circulation flow on the depth of the drilled well), Proceedings of MINKhiGP named after I.M. Gubkin, 1965, V. 53, pp. 73–83.
13. Gadzhiev F.M., Gidrogeologicheskie usloviya formirovaniya mestorozhdeniya nefti i gaza Yuzhno-Kaspiyskoy megavpadiny (Hydrogeological conditions of formation of oil and gas fields of the South Caspian megadepression), Moscow: Nedra Publ., 1998, 380 p.
14. Krylov V.I., Change in hydrodynamic pressure in a well depending on the speed of the drill string (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 1976, no. 1, pp. 13–16.
15. Dadashev I.A., Konvektivnyy teploobmen pri turbulentnom techenii burovykh rastvorov (Convective heat transfer in turbulent flow of drilling fluids), Krasnodar: Publ. of VNIIKRneft', 1976, pp. 157–162.
16. Es'man B.I., Termogidravlika pri burenii skvazhin (Thermal hydraulics in well drilling), Moscow: Nedra Publ., 1982, 247 p.
17. Es'man B.I., Dedusenko G.Ya., Yaishnikova E.A., Vliyanie temperatury na protsess bureniya glubokikh skvazhin (The influence of temperature on the process of deep well drilling), Moscow: Gostoptekhizdat Publ., 1962, 185 p.
18. Loytsyanskiy L.G., Mekhanika zhidkosti i gaza (Mechanics of liquid and gas), Moscow: Nauka Publ., 1973, 848 p.
19. Mekhtiev Sh.F., Mirzadzhanzade A.Kh., Aliev S.A., Teplovoy rezhim neftyanykh i gazovykh mestorozhdeniy (Thermal regime of oil and gas fields), Baku: Aznefteizdat Publ., 1960, 384 p.
20. Səfərov Y.İ., İsmayılov Ş.İ., Mürəkkəb şəraitdə neft və qaz quyularının qazıma texnologiyasının təkmilləşdirilməsi (Improving oil and gas well drilling technology in difficult conditions), Bakı: SADA, 2001, 182 p.
21. Səfərov Y.İ., Abışev C.H., Some problems in the hook and their prevention (In Azerb.), DNŞ-nin “Elmi Əsərlər” toplusu, 2004, no. 1.
22. Shatsov R.A., Shishenko R.I., Glikman L.S., Balitskiy P.V., Burenie neftyanykh i gazovykh skvazhin (Oil and gas well drilling), Mosocw: Gostoptekhizdat Publ., 1980, 219 p.