Study of conditions of solid paraffin phase formation in oil under changing thermobaric conditions

UDK: 622.276
DOI: 10.24887/0028-2448-2023-7-42-44
Key words: reservoir oil, oil saturation pressure, wax appearance temperature (WAT), paraffin phase transitions, physical and chemical properties, heavy oil components
Authors: D.M. Bikmeev (RN-BashNIPIneft, LLC, RF, Ufa; Ufa State Petroleum Technological University, RF, Ufa), V.V. Kalsin (RN-BashNIPIneft, LLC, RF, Ufa), M.M. Khasanov (RN-BashNIPIneft, LLC, RF, Ufa), A.V. Malinin (RN-BashNIPIneft, LLC, RF, Ufa

The formation of organic deposits as paraffins and asphaltenes on the rock and equipment surface leads to a deterioration of reservoir properties of formation, complications in the operation of downhole pumping equipment and, as a result, a decrease of oil production. In this regard, it is an important task to develop reliable approaches and tools for predicting of forming of these depositions. These approaches are implemented by phase diagrams construction taking into account wells thermobaric conditions and oil treatment facilities or thermodynamic models which based on equations of state using experimental data for tuning. For the successful application of both approaches, it is extremely important to develop reliable methods of experimental investigations of the phase behavior of paraffin in reservoir fluids samples.

The article considers the possibilities of application of experimental methods for reservoir oil phase behavior studying to identificate thermobaric conditions characterized by an increased risk of paraffin deposition. The saturation pressure and the wax appearance temperature of oil under study were determined experimentally, depending on thermobaric conditions. Investigation of the conditions of the solid paraffin phase deposition was carried out by recording the amount of formed solid particles from temperature at a fixed pressure using a high-pressure microscope. Based on the results obtained, the authors constructed a phase diagram combined with thermobarimetric measurements in the well, depending on its depth. The areas of increased risk of complications in the studied well were assessed. The proposed approach can be used in the economic and technological justification of the applied methods for the prevention and removal of paraffin deposits in the fields.

References

1. Ivanova L.V., Burov E.A., Koshelev V.N., Asphaltene-resin-paraffin deposits in the processes of oil production, transportation and storage (In Russ.), Neftegazovoe delo = Oil and Gas Business , 2011, no. 1, pp. 268–284, URL: http://ogbus.ru/authors/IvanovaLV/IvanovaLV_1.pdf

2. Tronov V.P., Mekhanizm obrazovaniya smolo-parafinovykh otlozheniy i bor’ba s nimi (Mechanism of formation of resin-paraffin deposits and its control), Moscow: Nedra Publ., 1969, 192 p.

3. Ahmed T., Equations of state and PVT analysis, Houston: Gulf Publishing Company, 2007, 562 p.

4. Zuo J.Y., Zhang D., Wax formation from synthetic oil systems and reservoir fluids, Energy & Fuels, 2008, V. 22, no. 4, pp. 2390–2395,

DOI: https://doi.org/10.1021/ef800056d

5. Lobanov A.A., Pustova E.Yu., Zolotukhin A.B., Wax phase behavior in reservoir hydrocarbon fluids (In Russ.), Vestnik Severnogo (Arkticheskogo) federal’nogo universiteta. Seriya: Estestvennye nauki = Arctic Environmental Research, 2016, no. 4, pp. 75–83, DOI: https://doi.org/10.17238/issn2227-6572.2016.4.75

6. Iksanov I.M., Voloshin A.I., Ragulin V.V., Telin A.G., Physical modeling of the phase state of paraffin wax in a porous medium and in the free volume under temperature and pressure changing (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2011, no. 6, pp. 18-21.



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .