The modern assessment of the economic efficiency of an oil and gas project involves the construction of a specific economic and mathematical calculation model, as well as the analysis of project criteria based on a set of predictive technological indicators for the reservoirs being developed and the field as a whole. The complexity of such modeling lies in the initial collection of information and its constant updating, since each field is individual and has its own geological and technological features of development, various options and standards for capital and operating costs, as well as tax models. Taking into account the latter provision, the intellectual-logical system (ILS) GRAF was developed. The core of the system is the use of a network (graph) form of representation of computational models, as well as a database management system of initial technical and economic indicators for various options for the development of oil and gas fields. The calculation structure is hierarchical and may change depending on the degree of knowledge and exploration of deposits, as well as on the possible change in the volume and content of the initial geological, technological and economic information. The result of an economic assessment based on the use of knowledge bases and data is to identify the most rational option for developing a field that meets the criterion for achieving the maximum economic effect from the possible complete extraction of oil reserves from the reservoirs while observing the requirements of ecology, subsoil and environmental protection. It is relevant that the creation of models of knowledge bases and databases for the economic assessment of the development of oil and gas fields allow storing information on fields in a systematic way and reproducing the history of economic indicators of field development in dynamics for the operation of an applied ILS in order to select the most effective options for the development of various deposits.
References
1. Pospelov G.S., Iskusstvennyy intellekt – osnova novoy informatsionnoy tekhnologii (Artificial intelligence is the basis of new information technology), Moscow: Nauka Publ., 1988, 280 p.
2. Vagin V.N., Deduktsiya i obobshchenie v sistemakh prinyatiya resheniy (Deduction and generalization in decision-making systems), Moscow: Nauka Publ., 1988, 384 p.
3. Pospelov D.A., Prikladnye sistemy iskusstvennogo intellekta (Applied systems of artificial intelligence), Kishinev: Shtiintsa Publ., 1993, 300 p.
4. Gavrilova T.A., Khoroshevskiy V.F., Bazy znaniy intellektual'nykh sistem (Knowledge bases of intelligent systems), St. Peterburg: Piter Publ., 2000, 200 p.
5. Bogatkina Yu.G., Otsenka effektivnosti investitsionnykh proektov v neftegazovoy otrasli s ispol'zovaniem mekhanizmov avtomatizirovannogo modelirovaniya (Evaluation of the effectiveness of investment projects in the oil and gas industry using automated modeling mechanisms), Moscow: Maks Press Publ., 2020, 248 p.
6. Zheltov Yu.P., Zolotukhin A.B., Ponomareva I.A., Metody prognozi-rovaniya razvitiya neftegazovogo kompleksa (Methods for forecasting the development of the oil and gas complex), Moscow: Nauka Publ., 1991, 230 p.
7. Rodionova L.N., Karamutdionova D.M., Peculiarities of investment projects efficiency evaluation in oil industry (In Russ.), Ekonomika i upravlenie narodnym khozyaystvom, 2015, no. 9(130), pp. 50–54.
8. Abakumov G.V., Evaluation of the economic efficiency of oil and gas production projects in Western Siberia (In Russ.), Neftegaz.ru, 2009, no. 8.
9. Ponomareva. I.A, Bogatkina Yu.G., Improving the regulatory and tax system to improve the efficiency of oil field development (In Russ.), Problemy ekonomiki i upravleniya neftegazovym kompleksom, 2014, no. 1, pp. 6–9.
10. Federal Law No. 39-FZ of February 25, 1999 (as amended on July 3, 2016) “Ob investitsionnoy deyatel'nosti v Rossiyskoy Federatsii, osushchestvlyaemoy v forme kapital'nykh vlozheniy” (On investment activities in the Russian Federation carried out in the form of capital investments), URL: http://www.consultant.ru
11. URL: http://www.rosneft.ru
12. Isachenko V.M., Otsenka proektnoy kapitaloemkosti razrabotki neftyanykh mestorozhdeniy (Assessment of project capital intensity of oil field development): thesis of candidate of economic sciences, Tyumen, 2004.
13. Raschet kapital'nykh zatrat (vlozheniy) v razrabotku mestorozhdeniya (Calculation of capital costs (investments) in field development), URL: https://kazedu.com/referat/197598/1