Investigating the influence of production string diameter of oil well on paraffin deposition intensity

UDK: 622.276.72
DOI: 10.24887/0028-2448-2022-5-98-102
Key words: oil production, lifting string, optimization, oil velocity, paraffin formation rate
Authors: P.Yu. Ilyushin (Perm National Research Polytechnic University, RF, Perm), K.A. Vyatkin (Perm National Research Polytechnic University, RF, Perm), A.V. Kozlov (Perm National Research Polytechnic University, RF, Perm)

At the late stages of field development, the issues of optimizing well oil production become topical. Artificial oil lift is the most energy-intensive process in an oil field. On the territory of the Perm region a significant part of the production fund is operated by electric submersible pumps, and the main complication in oil production is the formation of asphalt-resin-paraffin deposits. The authors proposed a technological justification for changing the diameter of the tubing string to reduce the intensity of organic deposits formation. This justification includes determining the change in the following parameters: friction pressure losses, energy consumption of oilfield equipment, oil flow rate and temperature distribution along the wellbore. Changing the last parameters has a significant impact on the intensity of paraffin deposits on the inner surface of the tubing. Evaluation calculations for the target well showed that a decrease in the diameter of the lifting string leads to an increase in the temperature of its inner surface, the flow rate in the lifting string, friction pressure losses and, accordingly, the energy consumption of oilfield equipment. For correct modeling of changes in the intensity of paraffin formation, laboratory studies were carried out on the WaxFlowLoop installation under various thermobaric and kinetic conditions. It has been shown that an increase in the flow rate and temperature in the lifting string can significantly reduce the rate of paraffin formation and, accordingly, increase the time interval between cleaning the well from organic deposits. An assessment of the inter-cleaning period of the well was carried out, and a clean-up operation for different diameters of the production string is supposed to be carried out when the same residual flow area is reached. As a result of the calculations, it was found that by reducing the diameter of the production string from the standard size from 73 to 42 mm it is possible to reduce the well cleanup period by 96.2%. At the same time, the increase in the cost of electricity for changing the operating mode of the downhole pumping equipment is insignificant.

References

1. Ilushin P., Vyatkin K., Kozlov A., Development of an approach for determining the effectiveness of inhibition of paraffin deposition on the wax flow loop laboratory installation, Inventions, 2021, V. 7, no. 1, https://doi.org/10.3390/inventions7010003

2. Bukreev V.G., Sipaylova N.Yu., Sipaylov V.A., Control strategy in accordance with economical criterion for electrotechnical installation of mechanized oil production (In Russ.), Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 2017, V. 328, no. 3, pp. 75-84.

3. Jia A., Guo J., Key technologies and understandings on the construction of Smart Fields, Petroleum Exploration and Development, 2012, V. 39m, pp. 127–131, https://doi.org/10.1016/S1876-3804(12)60024-X

4. Ehsani S., Mehrotra A.K., Validating heat-transfer-based modeling approach for wax deposition from paraffinic mixtures: an analogy with ice deposition, Energy & Fuels, 2019, V. 33, no. 3, pp. 1859–1868, https://doi.org/10.1021/acs.energyfuels.8b03777

5. Mehrotra A.K. et al., A review of heat transfer mechanism for solid deposition from “waxy” or paraffinic mixtures, The Canadian Journal of Chemical Engineering, 2020, V. 98, no. 12, pp. 2463-2488, https://doi.org/10.1002/cjce.23829

6. Ilyushin P.Yu., Vyatkin K.A., Votinova A.O., Kozlov A.V., Methodology for evaluation of organic deposits thermal conduction using laboratory facility wax flow loop (In Russ.), Nauka i tehnologii truboprovodnogo transporta nefti i nefteproduktov = Science & Technologies: Oil and Oil Products Pipeline Transportation, 2021, V. 11, no. 6, pp. 622–629, https://doi.org/10.28999/2541-9595-2021-11-6-622-629

7. Li H., Zhang J., Viscosity prediction of non-Newtonian waxy crude heated at various temperatures, Petroleum science and technology, 2014, V. 32, no. 5, pp. 521–526, https://doi.org/0.1080/10916466.2011.596886

8. Safiulina A.G. et al., Modeling of paraffin wax deposition process in poorly extractable hydrocarbon stock, Chemistry and Technology of Fuels and Oils, 2018, V. 53, no. 6, pp. 897–904, https://doi.org/10.1007/s10553-018-0879-x

9. Krivoshchekov S.N., Vyatkin K.A., Kozlov A.V., Modeling of asphaltene-resin-wax deposits formation in a string of hollow rods during simultaneous separate operation of two oil reservoirs, Chemical and Petroleum Engineering, 2021, V. 57, pp. 213–219, https://doi.org/10.1007/s10556-021-00920-1


Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .