Geological features of the field regarded in this article require the active application of modern integrated methods for maintenance and construction of high-tech wells. An increase in drilling efficiency improves the profitability of field development and the development of hard-to-recover reserves. Drilling efficiency is proposed to be ensured by complex of methods: geomechanical calculations in real time using geological steering data; cavernosity analysis of the well, taking into account the peculiarities of drilling and lithotypes; evaluation of the geometry of the borehole. Studies have shown that the clays in the upper part of the target formation are most significantly affected by the time factor and pooling out of hole with back-reaming, which contribute to an increase in the vugginess of the borehole. Taking into account geological features during drilling allows accurately adjust the wellbore stability model and the intervals of potential complications by promptly updating the geomechanical model in real time with recommendations. Geomechanical modeling allows to predict a safe drilling window. Reducing the drilling time of the production liner and minimizing the open state of the borehole due to the maximum approximation of the landing depth of the column shoe to the roof of the target formation, as well as minimizing departures into clay intervals during wiring reduces the risks of differential sticking and collapse. Geological steering support provides an increase in the reliability of the analysis of complications and gives a more complete picture during the well construction, which increases the likelihood of making optimal decisions in the future. Monthly updating of the hydrodynamic model for the target reservoir is necessary for the correct assessment of the stress state, selection of the optimal density of the drilling fluid and reduction of the risk of differential sticking. Using the well complexity index allows to evaluate and plan the necessary procedures for the successful construction of a well in similar conditions. The results obtained show that the implementation of recommendations and measures based on geomechanical modeling can ensure the safe construction of a well on the drilled area.
References
1. Kayurov N.K., Dontsov E.N., Lyudinovets A.M. et al., NNTC Research & Development Center: Integrated LWD, mud logging and geomechanical surveys while drilling in the Nizhnevartovsk district (In Russ.), ROGTEC Rossiyskie neftegazovye tekhnologii, 2018, V. 52, pp. 100–109.
2. Gabitov S.I., Gotsulyak A.S., Chebyshev I.S., Mukhamadiev R.V., Support of drilling high-technological wells based on the integration of geomechanics and geosteering (In Russ.), Neftegazovoe delo, 2020, V. 18, no. 2, pp. 15–23, https://doi.org/10.17122/ngdelo-2020-2-15-23
3. Hamid O., Qahtani A., Alamer S., Sherbeny W., Mitigating wellbore stability risks through geomechanical solutions, SPE-192872-MS, 2018, https://doi.org/10.2118/192872-MS
4. Toropetskiy K.V., Kayurov N.K., Ul’yanov V.N., Borisov G.A., Modeling support for horizontal drilling in Eastern Siberia (In Russ.), ROGTEC Rossiyskie neftegazovye tekhnologii, 2017, V. 48, pp. 76–87.
5. Godwin C., Jacob N., Bariakpoa K., Samuel N., Evaluation of optimum mud weight window for prevention of wellbore instability in Niger Delta wells, IOSR Journal of Engineering, 2020, V. 10, no. 10, pp. 61 – 66.
6. Salim A., Qasim H., Rajeev R. et al., Successful drilling campaign of high angled wells in tight gas fields using 3D geomechanical modeling and real-time monitoring, SPE-202123-MS, 2021, https://doi.org/10.2118/202123-MS
7. Guifen X., Draoui E.H., Jamal R. et al., Geomechanics characterization of Nahr Umr and Laffan Shales through anisotropic geomechanics and shale stability analysis for drilling optimization, SPE-202933-MS, 2020, https://doi.org/10.2118/202933-MS
8. Al Enezi D., Al Hajeri M., Gholum S. et al., Realtime drilling geomechanics aids safe drilling through unstable shales and Channel sands of Wara formations, Minagish field, West Kuwait, SPE-200929-MS, 2021, https://doi.org/10.2118/200929-MS.
9. Chettykbayeva K., Petrakov Y., Sobolev A. et al., The strategic and tactical value of geomechanics for drilling operational excellence of ERD well in Uzen field, SPE-191632-18RPTC-MS, 2018, https://doi.org/10.2118/191632-18RPTC-MS
10. Al Bahrani H., Al Yami A., Drillstring vibrations and wellbore quality: Where drillstring design meets geomechanics, SPE-193253-MS, 2018, https://doi.org/10.2118/193253-MS
11. Karimi M., Drill-cuttings analysis for real-time problem diagnosis and drilling performance optimization, SPE-165919-MS, 2013, https://doi.org/10.2118/165919-MS
12. Renato G., Zuly H., Yair A., New approach for estimating cavings volume to avoid wellbore instabilities, Proceedings of Rock Mechanics for Natural Resources and Infrastructure-ISRM Specialized Conference, Goiania, Brazil, 2014, URL: https://www.researchgate.net/publication/335189023
13. Ortenzi L., Evans M., Maeso C.J., An integrated caliper from neutron, density, and ultrasonic azimuthal LWD data, SPE-77479-MS, 2002, https://doi.org/10.2118/77479-MS
14. Nadir A., Bachir G., Laid S. et al., Effective solutions to well integrity management using multi finger caliper and electromagnetic tool, SPE-198570-MS, 2019, https://doi.org/10.2118/198570-MS.
15. Monali L., Jayabrata K., Pankaj S. et al., Managing multidimensional constraints to drill ERD wells in Rajasthan with high directional difficulty index (DDI), SPE-178073-MS, 2015, https://doi.org/10.2118/178073-MS.