A great number of space images of the Caspian syneclise taken from various space carriers is currently available for free. The article presents a decryption scheme made using 37 images covering the entire territory of the Caspian Sea. Shooting conditions were selected as cloudless as possible. The season was spring. A mosaic of thermal images has been assembled from individual images with the use of the QGIS program. The decryption schemes analysis was carried out for the period from 1973 to 2021. An expert (author's) decoding was also carried out to identify the geomorphological and landscape features of the most common lineaments. As stated in this paper, lineaments are straightened and (or) linearly organized elements of the image of natural genesis. Numerous circular photoanomalies of various severity and size were also distinguished during visual decoding. Large numbers of local phototone and photo pattern anomalies were highlighted in the images, indicating the position of the salt domes of the Caspian Sea and brachyanticlines spread within the adjacent territories. Comparison of the lineaments deciphered in this work with previously compiled maps showed that almost all objects identified earlier are depicted on satellite images, but previously unknown ones are also highlighted. Particular attention in this work is paid to the identified intersections of lineaments since they are often the indicators of the highest permeability of the lithosphere. Mineral deposits, including hydrocarbons, are most often associated with them. The resulting diagram compiled according to the results of computer and expert decryption shows previously uncharted lineaments.
References
1. Orudzheva D.S., Vorob’ev V.T., Romashov A.A., Aerokosmicheskie issledovaniya neftegazonosnykh territoriy Prikaspiyskoy vpadiny (Aerospace studies of oil and gas bearing areas of the Caspian basin), Moscow: Nauka Publ., 1982, 76 p.
2. Ramberg H., Gravity, deformation and the earth’s crust, London, New York: Academic P., 1967.
3. Kornienko S.G., Vozmozhnosti i perspektivy primeneniya metodov teplovogo distantsionnogo zondirovaniya v neftegazovoy otrasli (Possibilities and prospects of application of methods of thermal remote sensing in the oil and gas industry), Collected papers “Nauka i tekhnika v gazovoy promyshlennosti” (Science and technology in the gas industry), 2002, pp. 8–14.
4. Trofimov D.M., Distantsionnye metody v neftegazovoy geologii (Remote sensing methods in oil and gas geology), Moscow: Infra-Inzheneriya Publ., 2018, 388 p.
5. Shilkin A.N., Kosmicheskaya geoskopiya kak metod izucheniya glubinnoy struktury: na primere Prikaspiyskoy vpadiny (Space geoscopy as a method of studying the deep structure: on the example of the Caspian basin), Saratov: Publ. of Saratov university, 1982, 129 p.
6. Shul’ts S.S., Planetarnaya treshchinovatost’ (Planetary fracturing), Leningrad: Publ. of LSU, 1973, 90 p.
7. Sadovskiy M.A., On the block structure of the Earth’s lithosphere (In Russ.), Uspekhi fizicheskikh nauk, 1985, V. 147, pp. 421–422.
8. Miloserdova L.V., Dantsova K.I., Khafizov S.F., Connection of lineaments and nodes of their intersections with the oil and gas content of the Caspian syneclise and its framing (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2021, no. 6, pp. 22–26, https://doi.org/10.24887/0028-2448-2021-6-22-26