The article discusses the theoretical prerequisites for the formation of hydrocarbon fields at great (more than 6 km) depths from the point of view of the possibility of generation processes, their features, boundary conditions for the preservation of accumulations and the direction of fluid transformation under the influence of high temperatures and pressures, as well as changes in the reservoir filtration properties of reservoirs and seals. Until recently, at the axiom level, there was an idea that the distribution of oil accumulations is limited to a depth of 4-5 km, while the possibility of the existence of gas and condensate accumulations at great depths was not in doubt. Such zoning of hydrocarbons accumulations was the basic one in the sedimentary migration theory. However, large-scale drilling of wells to ultra-deep horizons and the discovery of oil accumulations in them forced us to reconsider these views and look for an explanation for this phenomenon. The article focuses on the possibility of the formation of liquid hydrocarbons accumulations based on the analysis of hydrocarbon systems, the relationship and functioning of their individual elements in extreme conditions. The study of the features of the realization of generation potential of specific source rocks with a high (15% or more) initial content of organic matter, which accumulated in relatively deep-water conditions, showed that intensive processes of oil generation in them are directly related to the formation of microcracks at high temperatures and pressures. The article is based on the summarization of a large number of published data on the results of drilling deep wells onshore in China and the Caspian Basin, as well as on the shelf of the Gulf of Mexico and in Norway. Some geological criteria favorable for the formation of oil and gas potential at great depths have been determined.
References
1. Magoon L.B., Dow W.G., The petroleum system: From source to trap, AAPG Memoir, 1994, V. 60, pp. 3–243–24.
2. Nadeau P.H., Bjørkum P.A., Walderhaug O., Petroleum system analysis: impact of shale diagenesis on reservoir fluid pressure, hydrocarbon migration and biodegradation risks, In: Petroleum geology: North-West europe and global perspectives: edited by Doré A.G., Vining B., Proceedings of the 6th Petroleum Geology Conference, Geological Society, London, 2005, pp. 1267–1274, http://dx.doi.org/10.1144/0061267
3. Samvelov R.G., Hydrocarbon deposits at great depths: features of formation and placement (In Russ.), Geologiya nefti i gaza, 1995, no. 9, pp. 5–16
4. Iskaziev K.O., Zhemchugova V.A., Kosenkova N.N. et al., Geologo-geokhimicheskie predposylki neftegazonosnosti podsolevykh otlozheniy Severnoy bortovoy zony Prikaspiyskoy vpadiny (Geological and geochemical prerequisites for the oil and gas potential of subsalt deposits of the northern marginal zone of the Pre-Caspian depression), URSS Publ., 2019, 205 p.
5. Feyzullayev A.A., Lerche I., Temperature-depth control of petroleum occurrence in the sedimentary section of the South Caspian basin, Petroleum Research, 2020, V. 5, no. 1, pp. 70–76, https://doi.org/10.1016/j.ptlrs.2019.10.003
6. Maksimov S.P., Lodzhevskaya M.I., Samvelov R.G. et al., Geologicheskie usloviya neftegazonosnosti na bol’shikh glubinakh (Geological conditions of oil and gas potential at great depths), In: Generatsiya i migratsiya nefti (Generation and migration of oil), Proceedings of International Geological Congress, XXVIII session, Moscow, 1988, pp. 83–92.
7. Keith S.B., Spieth V., Rasmussen J.C., Zechstein-Kupferschiefer mineralization reconsidered as a product of ultra-deep hydrothermal, mud-brine volcanism, 2017, https://doi.org/10.5772/intechopen.72560.
8. Chai Z., Chen Z., Liu H. et al., Light hydrocarbons and diamondoids of light oils in deep reservoirs of Shuntuoguole Low Uplift, Tarim Basin: Implication for the evaluation on thermal maturity, secondary alteration and source characteristics, Marine and Petroleum Geology, 2020, https://doi.org/10.1016/j.marpetgeo.2020.104388
9. Caineng Zou, Du Jinhu, Xu Chunchun, Formation, distribution, resource potential, and discovery of Sinian–Cambrian giant gas field, Sichuan Basin, SW China, Petroleum Exploration and Development, 2014, V. 41, no. 3, https://doi.org/10.1016/S1876-3804(14)60036-7
10. Ehrenberg S.N., Nadeau P.H., Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships, AAPG Bulletin, 2005, V. 89, no. 4, pp. 435–445, pp. 306-324, DOI:10.1016/S1876-3804(14)60036-7
11. Godo T., The Smackover-Norphlet petroleum system, deepwater Gulf of Mexico: Oil fields, oil shows, and dry holes, Gulf Coast Association of Geological Societies, 2019, no. 8, pp. 104-152.
12. Xusheng Guo, Dongfeng Hu, Yuping Li, J. Duan, Chunhui Ji, Hua Duan, Discovery and theoretical and technical innovations of Yuanba gas field in Sichuan Basin, SW China, Petroleum Exploration and Development, 2018, V. 45(1), pp. 14–26, https://doi.org/10.1016/S1876-3804(18)30002-8
13. Sarg J.F., Oil and gas reservoirs and coral reefs, In: Encyclopedia of Modern Coral Reefs: edited Hopley D., Encyclopedia of Earth Sciences Series, Springer, Dordrecht, 2011, https://doi.org/10.1007/978-90-481-2639-2_121
14. Ngia N.R., Hu M., Gao D., Hydrocarbon reservoir development in reef and shoal complexes of the Lower Ordovician carbonate successions in the Tazhong Uplift in central Tarim basin, NW China: constraints from microfacies characteristics and sequence stratigraphy, J Petrol Explor Prod Technol., 2020, V. 10, pp. 2693–2720, https://doi.org/10.1007/s13202-020-00936-y
15. Lukas A., Diamond L.W., Mazurek M., Davis D.W., Creation of secondary porosity in dolostones by upwelling basement water in the Foreland of the Alpine Orogen, Geofluids, 2019, Article ID 5210404, 23 p., https://doi.org/10.1155/2019/5210404
16. Qi L., Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin, China Petroleum Exploration, https://doi.org/10.3969/j.issn.1672–7703.2020.01.010.
17. Zhang X.F., Shi K.B., et al., Retention processes and porosity preservation in deep carbonate reservoirs, Geol. Sci. Tech. Inform., 2014, V. 33(02), pp. 80–85.
18. Guo X., Guo T., Huang R., Chen Z., Reservoir development characteristics and predication technologies of large Puguang–Yuanba gas field, Engineering Sciences, 2010, V. 12(10), pp. 82–90.