For a complete understanding of the oil and gas fields formation processes and correct choice of the direction of their search and exploration, facies-cyclical analysis is required. On the example of the Pirallahi adasy area, the possibility of using the logging facies technique for the facies-cyclic analysis of deposits of the productive series of the Early Pliocene is shown. The Pirallahi adasy field is located in the Absheron oil and gas region. The sandy horizons of the Kirmaky and Pre Kirmaky suites of the productive series are the main oil and gas bearing objects at the Pirallakhi adasy fiel. dGenetic studies of sandy reservoirs have been carried out. Alluvial deposits play an important role in the formation of oil and gas deposits. These deposits are developed within the coastal-marine conditions of sedimentation of sandy bodies, especially in the paleodelts. Non-anticlinal hydrocarbon traps are genetically related to the aforementioned sedimentation conditions. Prediction of changes in the main parameters of sand bodies-reservoirs as well as the choice of a rational system for the development of the field is possible only with accurate information on the origin of sand bodies. In this regard, the topic of the article devoted to the study of the conditions and environments of sedimentation of deposits of the productive series is very relevant. At present, well logging data are widely used to study the genesis of sedimentary rocks. The article shows the efficiency of using field geophysical data in the study of both lithological and facies variability of terrigenous deposits. In the process of research, data from electrical logging and X-ray logging were used, , on the basis of which the genesis of sandy reservoir bodies was determined.
References
1. Alikhanov E.N., Geologiya Kaspiyskogo morya (Geology of the Caspian Sea), Baku: Elm Publ., 1978, 190 p.
2. Alekseev V.P., Litologo-fatsial'nyy analiz (Lithofacial analysis), Ekaterinburg: Publ. of USMA, 2002, 147 p.
3. Maksimov E.M., Neftegazovaya litologiya (Oil and gas lithology), Tyumen': Publ. of TIU, 2016, 353 p.
4. Mamedov P.Z., Seysmostratigraficheskie issledovaniya geologicheskogo stroeniya osadochnogo chekhla Yuzhno-Kaspiyskoy megavpadiny v svyazi s perspektivami neftegazonosnosti (Seismostratigraphic studies of the geological structure of the sedimentary cover of the South Caspian megabasin in connection with the prospects of oil and gas potential): thesis of doctor of geological and mineralogical science, Baku, 1992.
5. Seidov V.M., Khalilova L.N., Examples of reconstruction of productive strata depositional environment in Azerbaijan on the base of well logging data (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2019, no. 5, pp. 62–66, DOI: 10.24887/0028-2448-2019-5-62-66, URL: https://doi.org/10.24887/0028-2448-2019-5-62-66
6. Gabdullin R.R., Kopaevich L.F., Ivanov A.V., Sekventnaya stratigrafiya (Sequential stratigraphy), Moscow: MAKS Press Publ., 2008, pp. 94–100.
7. Muromtsev V.S., Elektrometricheskaya geologiya peschanykh tel – litologicheskikh lovushek nefti i gaza (Electrometric geology of sand bodies - lithological traps of oil and gas), Leningrad: Nedra Publ., 1984, 260 p.
8. Shilov G.Ya., On the issue of genetic classification of rocks for facies interpretation of logging data (In Russ.), Uchenye zapiski AzGNA, 1993, no. 6, pp. 10−14.
9. Shilov G.Ya., On the issue of assessing the type of genetic facies of carbonate rocks according to logging data (In Russ.), Izvestiya vuzov. Neft' i gaz, 2009, no. 7, pp. 16−23.
10. Shilov G.Ya., Dzhafarov I.S., Geneticheskie modeli osadochnykh i vulkanogennykh porod i tekhnologiya ikh fatsial'noy interpretatsii po geologo-geofizicheskim dannym (Genetic models of sedimentary and volcanogenic rocks and the technology of their facies interpretation based on geological and geophysical data), Moscow: Publ. of VNIIgeosistem, 2001, 394 p.