This article is a practical sequel of the previous paper published in Oil Industry Journal in March 2021. In the previous publication authors considered the theoretical basis for using drilling mechanics parameters to predict porosity and density on the bit by calculating indicator function (rock hardness) through the drilling mechanics parameters and following function calibration in well conditions on the results of well log data (porosity and bulk density).
The present article is based on the results of technology practical testing during the geosteering of the horizontal wells. In a generalized form, the results of applying the technology for forecasting porosity and lithology on the bit based on drilling mechanics data are considered. It is shown that the accuracy of the forecast depends on the type of well path. In total four generalized types were considered: ascending, descending, horizontal, and wavy ("snake"). Approbation is carried out on groups of layers AS, BS, YUS. The main focus of the paper is on the accuracy of the convergence of rock porosity and lithology according to drilling mechanics and well logging data. Some practical explanations are given. It also outlines the difficulties that the authors encountered when introducing the technology into the production process of well geosteering. Two cases are considered in detail. On these examples we step by step analyze drilling mechanics calculations, well logging data, decisions made by the geosteering engineer during the process of drilling support, as well as and achieved drilling efficiency.
References
1. Luk'yanov E.E. et al., An extensive research is required for the effective studying and drilling of horizontal wells (In Russ.), Karotazhnik, 2019, no. 4 (298), pp. 114–134.
2. Luk'yanov E.E., Energy logging as a basis of up-to-date technologies in geologic and engineering surveys (mud logging) (In Russ.), Burenie i neft', 2018, no. 07–08, pp. 34–41.
3. Kolesov V.A., Sklyar K.S., Forecasting rocks reservoir properties on a bit according to the drilling mechanics data while rotary drilling horizontal sidetrack wells (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2021, no. 3, pp. 54–57, DOI: 10.24887/0028-2448-2021-3-54-57
4. Fedorov V.S., Proektirovanie rezhimov bureniya (Design of drilling modes), Moscow: Gostoptekhizdat Publ., 1958, 215 p.
5. Potapov Yu.F., Makhon'ko V.D., Shevaldin P.E. et al., Issledovanie zavisimostey pokazateley rabot dolot ot parametrov rezhima bureniya (Investigation of the dependencies of bit performance indicators on drilling mode parameters), Moscow: Publ. of VNIIOENG, 1971, 63 p.
6. Eygeles R.M., Strekalova R.V., Raschet i optimizatsiya protsessov bureniya skvazhin (Calculation and optimization of well drilling processes), Moscow: Nedra Publ., 1977, 200 p.
7. Fedorov V.S., Nauchnye osnovy rezhimov bureniya (Scientific basis of drilling regimes), Moscow: Gostoptekhizdat Publ., 1951, 248 p.
8. Metodicheskie rekomendatsii po podschetu zapasov nefti i gaza ob’emnym metodom. Otsenka kharaktera nasyshchennosti po dannym GIS (Guidelines for the calculation of reserves of oil and gas by volumetric method. Assessment of the nature of saturation according to well logging): edited by Petersil’e V.I., Poroskun V.I., Yatsenko G.G., Moscow – Tver: Publ. of VNIGNI, 2003. 261 p.