The nature of the formation and conditions of occurrence of gas-condensate deposits in the Achimov reservoirs of the Yuzhno-Venikhyartskoye field

DOI: DOI: 10.24887/0028-2448-2021-11-22-27
Key words: low-temperature gas-condensate systems, hydrocarbons of the early generation zone, vertical zonality of naphthidogenesis, kerogen
Authors: О.V. Elisheva , Е.L. Lazar , V.G. Safonov (Tyumen Petroleum Research Center LLC), А.P. Kulik (RN-Uvatneftegas), D.N. Zhestkov (Rosneft Oil Company, RF, Moscow)

Rosneft Oil Company focuses on research work at the West Siberian basin. The territories are characterized by a low hydrocarbon potential, but they are of interest to the company in the future. Such territories include the peripheral regions of the basin, where the main problem for the Jurassic reservoirs is the forecast of their phase saturation. This problem does not allow the company to actively invest in prospecting and exploration work in such areas. In order that, Rosneft Oil Company to be able to increase the company's hydrocarbon resource base by opening new hydrocarbon deposits in the peripheral regions of the West Siberian basin, it is necessary to understand the mechanism of formation of deposits of different phase composition. For example, small Yuzhno-Venikhyartskoye gas-condensate field was discovered in 2014 on the border of the northern districts of the Uvat region and Khanty-Mansiysk autonomous district. The phase composition of hydrocarbons is uncharacteristic for territories where oil deposits are usually discovered.

The article considers the results of the studying the nature of the formation of gas-condensates in the peripheral territories of West Siberian basin on the example of Yuzhno-Venikhyartskoye gas-condensate field. The authors briefly describe geological, geodynamic, geochemical, thermobaric and tectonic conditions that are necessary for the formation and existence of gas-condensate deposits at depths of up to 2 km in the peripheral territories of the West Siberian basin. There is no doubt that understanding the formation mechanism of gas-condensate deposits in the peripheral territories of sedimentary basins will allow the company to expand its prospects for prospecting not only in the northern part of the Uvat region, but also in the southern regions of the Khanty-Mansiysk autonomous district.

References

1. Elisheva O.V., Lazar' E.L., Lyzhin E.A. et al., The methodology of adaptation for searching new hydrocarbon reservoir in the Jurassicand Neokomian sediments of the Uvat project areas by the results of the exploration 2015–2019 (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2020, no. 12, pp. 2–7, DOI: 10.24887/0028-2448-2020-11-32-37

2. Tissot B.P., Welte D.H., Petroleum formation and occurrence, Springer-Verlag Telos, 1984, 699 p.

3. Kontorovich A.E., Ocherki teorii naftidogeneza (Essays on the theory of naphthydogenesis), Novosibirsk: Publ. of SB RAS, 2004, 545 p.

4. Lyugay D.V., Lapshin V.I., Volkov A.N. et al., Features of the composition, properties and phase characteristics of reservoir mixtures of deep-seated deposits of oil and gas condensate fields of Gazprom PJSC (In Russ.), Vesti gazovoy nauki, 2015, no. 4(24), pp. 74–83.

5. Lapshin V.I. et al., Features of the phase behavior of reservoir gas condensate systems in the field of direct evaporation (In Russ.), Vesti gazovoy nauki, 2016, no. 2(26), pp. 131–137.

6. Zhuze N.G., Residual saturation of Neocomian deposits in the north of Western Siberia - an additional source of hydrocarbons (In Russ.), Geologiya nefti i gaza, 1989, no. 11, pp. 8-14.

7. Taranenko E.I., Gerasimov Yu.A. et al., The problem of gas condensate systems formation (In Russ.), Vestnik RUDN. Seriya: Inzhenernye issledovaniya, 2008, no. 1, pp. 96–104.

8. Bazhenova O.K., Rannyaya generatsiya nefti i perspektivy neftenosnosti nebol'shikh glubin (Early oil generation and shallow oil-bearing prospects), Geoinformak’s Review: Geologiya, metody poiskov, razvedki i otsenki mestorozhdeniy toplivno-energeticheskogo syr'ya (Geology, methods of prospecting, exploration and evaluation of deposits of fuel and energy raw materials), 1992, V. 6, pp. 50–52.

9.  Stroganov L.V., Skorobogatov V.A., Gazy i nefti ranney generatsii Zapadnoy Sibiri (Earlier generation gas and oil of Western Siberia), Moscow: Nedra Publ., 2004, 415 p.

10. Bylinkin G.P., Evaluation of phase transition of deep-buried formation fluids (In Russ.), Geologiya nefti i gaza, 2006, no. 2, pp. 55–63.

11. Neruchev S.G., Nefteproizvodyashchie svity i migratsiya nefti (Oil producing formations and oil migration), Leningrad: Nedra Publ., 1969, 240 p.

12. Vassoevich N.B., The theory of sedimentary-migration origin of oil (historical overview and current state) (In Russ.), Izvestiya AN SSSR. Ser. Geologiya, 1967, no. 11, pp. 135-156.

13. Lopatin N.V., Historical and genetic analysis of oil generation using the model of uniform continuous lowering of the source reservoir (In Russ.), Izvestiya AN SSSR. Ser. Geologiya, 1976, no. 8, pp. 93-101.

14. Volkov A.N. et al., Behavior of geochemical factors in context of low reservoir pressures at development of deposits (In Russ.), Vesti gazovoy nauki, 2016, no. 2(26), pp. 28–33.

15.  Zor'kin L.M., Genezis gazov podzemnoy gidrosfery (v svyazi s razrabotkoy metodov poiska zalezhey uglevodorodov) (The underground hydrosphere gases genesis (in connection with the development of methods for the search for hydrocarbon deposits)), URL: http://www.geosys.ru/images/articles/Zorkin_1_2008.pdf.

16. Goncharov I.V., Geokhimiya neftey Zapadnoy Sibiri (Geochemistry of oil in Western Siberia), Moscow: Nedra Publ., 1987, 181 p.

17. Starobinets I.S., Geologo-geokhimicheskie osobennosti gazokondensatov (Geological and geochemical features of gas condensates), Leningrad: Nedra Publ., 1974, 151 p.

18. Elisheva O.V. et al., Ispol'zovanie paleotektonicheskikh rekonstruktsiy na litsenzionnykh uchastkakh Uvata dlya snyatiya geologicheskikh riskov po nezapolneniyu vyyavlennykh lovushek uglevodorodami (Use of paleotectonic reconstructions in the Uvat license areas to remove geological risks due to the failure to fill the identified traps with hydrocarbons), Proceedings of Trofimuk readings Novosibirsk, 2019, 382 p.

Rosneft Oil Company focuses on research work at the West Siberian basin. The territories are characterized by a low hydrocarbon potential, but they are of interest to the company in the future. Such territories include the peripheral regions of the basin, where the main problem for the Jurassic reservoirs is the forecast of their phase saturation. This problem does not allow the company to actively invest in prospecting and exploration work in such areas. In order that, Rosneft Oil Company to be able to increase the company's hydrocarbon resource base by opening new hydrocarbon deposits in the peripheral regions of the West Siberian basin, it is necessary to understand the mechanism of formation of deposits of different phase composition. For example, small Yuzhno-Venikhyartskoye gas-condensate field was discovered in 2014 on the border of the northern districts of the Uvat region and Khanty-Mansiysk autonomous district. The phase composition of hydrocarbons is uncharacteristic for territories where oil deposits are usually discovered.

The article considers the results of the studying the nature of the formation of gas-condensates in the peripheral territories of West Siberian basin on the example of Yuzhno-Venikhyartskoye gas-condensate field. The authors briefly describe geological, geodynamic, geochemical, thermobaric and tectonic conditions that are necessary for the formation and existence of gas-condensate deposits at depths of up to 2 km in the peripheral territories of the West Siberian basin. There is no doubt that understanding the formation mechanism of gas-condensate deposits in the peripheral territories of sedimentary basins will allow the company to expand its prospects for prospecting not only in the northern part of the Uvat region, but also in the southern regions of the Khanty-Mansiysk autonomous district.

References

1. Elisheva O.V., Lazar' E.L., Lyzhin E.A. et al., The methodology of adaptation for searching new hydrocarbon reservoir in the Jurassicand Neokomian sediments of the Uvat project areas by the results of the exploration 2015–2019 (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2020, no. 12, pp. 2–7, DOI: 10.24887/0028-2448-2020-11-32-37

2. Tissot B.P., Welte D.H., Petroleum formation and occurrence, Springer-Verlag Telos, 1984, 699 p.

3. Kontorovich A.E., Ocherki teorii naftidogeneza (Essays on the theory of naphthydogenesis), Novosibirsk: Publ. of SB RAS, 2004, 545 p.

4. Lyugay D.V., Lapshin V.I., Volkov A.N. et al., Features of the composition, properties and phase characteristics of reservoir mixtures of deep-seated deposits of oil and gas condensate fields of Gazprom PJSC (In Russ.), Vesti gazovoy nauki, 2015, no. 4(24), pp. 74–83.

5. Lapshin V.I. et al., Features of the phase behavior of reservoir gas condensate systems in the field of direct evaporation (In Russ.), Vesti gazovoy nauki, 2016, no. 2(26), pp. 131–137.

6. Zhuze N.G., Residual saturation of Neocomian deposits in the north of Western Siberia - an additional source of hydrocarbons (In Russ.), Geologiya nefti i gaza, 1989, no. 11, pp. 8-14.

7. Taranenko E.I., Gerasimov Yu.A. et al., The problem of gas condensate systems formation (In Russ.), Vestnik RUDN. Seriya: Inzhenernye issledovaniya, 2008, no. 1, pp. 96–104.

8. Bazhenova O.K., Rannyaya generatsiya nefti i perspektivy neftenosnosti nebol'shikh glubin (Early oil generation and shallow oil-bearing prospects), Geoinformak’s Review: Geologiya, metody poiskov, razvedki i otsenki mestorozhdeniy toplivno-energeticheskogo syr'ya (Geology, methods of prospecting, exploration and evaluation of deposits of fuel and energy raw materials), 1992, V. 6, pp. 50–52.

9.  Stroganov L.V., Skorobogatov V.A., Gazy i nefti ranney generatsii Zapadnoy Sibiri (Earlier generation gas and oil of Western Siberia), Moscow: Nedra Publ., 2004, 415 p.

10. Bylinkin G.P., Evaluation of phase transition of deep-buried formation fluids (In Russ.), Geologiya nefti i gaza, 2006, no. 2, pp. 55–63.

11. Neruchev S.G., Nefteproizvodyashchie svity i migratsiya nefti (Oil producing formations and oil migration), Leningrad: Nedra Publ., 1969, 240 p.

12. Vassoevich N.B., The theory of sedimentary-migration origin of oil (historical overview and current state) (In Russ.), Izvestiya AN SSSR. Ser. Geologiya, 1967, no. 11, pp. 135-156.

13. Lopatin N.V., Historical and genetic analysis of oil generation using the model of uniform continuous lowering of the source reservoir (In Russ.), Izvestiya AN SSSR. Ser. Geologiya, 1976, no. 8, pp. 93-101.

14. Volkov A.N. et al., Behavior of geochemical factors in context of low reservoir pressures at development of deposits (In Russ.), Vesti gazovoy nauki, 2016, no. 2(26), pp. 28–33.

15.  Zor'kin L.M., Genezis gazov podzemnoy gidrosfery (v svyazi s razrabotkoy metodov poiska zalezhey uglevodorodov) (The underground hydrosphere gases genesis (in connection with the development of methods for the search for hydrocarbon deposits)), URL: http://www.geosys.ru/images/articles/Zorkin_1_2008.pdf.

16. Goncharov I.V., Geokhimiya neftey Zapadnoy Sibiri (Geochemistry of oil in Western Siberia), Moscow: Nedra Publ., 1987, 181 p.

17. Starobinets I.S., Geologo-geokhimicheskie osobennosti gazokondensatov (Geological and geochemical features of gas condensates), Leningrad: Nedra Publ., 1974, 151 p.

18. Elisheva O.V. et al., Ispol'zovanie paleotektonicheskikh rekonstruktsiy na litsenzionnykh uchastkakh Uvata dlya snyatiya geologicheskikh riskov po nezapolneniyu vyyavlennykh lovushek uglevodorodami (Use of paleotectonic reconstructions in the Uvat license areas to remove geological risks due to the failure to fill the identified traps with hydrocarbons), Proceedings of Trofimuk readings Novosibirsk, 2019, 382 p.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

18.05.2022
11.05.2022
28.04.2022