Increase in oil production by application pseudoplastic hydrophobic polymer system SPA-Well

UDK: УДК 622.276.43:678
DOI: DOI: 10.24887/0028-2448-2021-11-120-123
Key words: gel-forming reagent, polymer-gel SPA-Well technology, technological efficiency
Authors: R.N. Fakhretdinov1, A.A. Fatkullin1, G.Kh. Yakimenko1, B.A. Imanbaev2, A.Ya. Khavkin3,4 1Multifunctional Company ChemServiceEngineering LLC, RF, Moscow 2KazNIPImunaygas, The Republic of Kazakhstan, Aktau 3Gubkin University, RF, Moscow 4N.K.Baibakov Innovation Foundation, RF, Moscow

In recent years, interest in the use of polymer systems to improve the efficiency of oil production has grown significantly, and the intensification of their use has been noted in a number of oil-producing countries, including Brazil, Venezuela, Canada, China, Colombia, the United States, Russia, France. The result of pilot works on the injection of SPA-Well reagent into the injection well of the Zhalgiztobe field, which has an oil viscosity of more than 800 mPa·s, a layered heterogeneous reservoir and a core permeability spread of more than 200 times, are presented. The waters of the Zhalgiztobe field are chlorocalcium brines with mineralization of 35-55 g/l, which significantly reduce the viscosity of the polymer solution relative to the polymer mixing in fresh water. A feature of the SPA-Well reagent is its hydrophobicity, however, allowing it to be used for mxing in injected water. The SPA-Well reagent is actively retained in a porous media, practically without being washed out into production wells, unlike traditional polymers. The results of experimental studies of the reagent solution on the water of the deposit are presented. Experiments have shown that the SPA-Well reagent has a viscosity of 30 mPa·s when injected, reaching values of hundreds of thousands of millipascal-second in reservoir conditions. Pilot works on the injection of SPA-Well solution at the site of injection well No. 218 in a total volume of 5.3 tons in the form of a fractional rim were carried out on December 11-16, 2019. The technological effect of more than 1300-2200 tons of additional production or 300-400 tons per 1 ton of injected reagent was obtained. In accordance with the mechanism of influence of thickening viscoelastic systems on the process of oil displacement, the technological effect will only increase over time (by increasing the volume of injection of pushing water).

References

1. Grigorashchenko G.I., Zaytsev Yu.V., Kukin V.V. et al., Primenenie polimerov v dobyche nefti (The use of polymers in oil recovery), Moscow: Nedra Publ., 1985, 1978, 213 p.

2. Surguchev M.L., Vtorichnye i tretichnye metody uvelicheniya nefteotdachi plastov (Secondary and tertiary methods of enhanced oil recovery), Moscow: Nedra Publ., 1985, 308 p.

3. Abidin A.Z., Puspasari T., Nugroho W.A., Polymers for enhanced oil recovery technology, Procedia Chem., 2012, V. 4, pp. 11–16.

4. Khavkin A.Ya., Fizika neftegazovykh plastov i nelineynye yavleniya (Physics of oil and gas reservoirs and nonlinear phenomena), Moscow: Publ. of Gubkin University, 2019, 288 p.

5. Kadet V.V., Khavkin A.Ya., Khavkin B.A., On the trend of polymer EOR-technologies (In Russ.), Estestvennye i tekhnicheskie nauki, 2020, no. 12, pp. 138–145.

6. Dupuis G., Nieuwerf J., A cost-effective technique to enhance oil recovery and reduce carbon intensity with polymer flooding and modular skids (In Russ.), Territoriya NEFTEGAZ, 2020, no. 9–10, pp. 38–41.

7. Patent RU 2723797 C1, Composition for increasing oil production, Inventors: Fakhretdinov R.N., Selimov D.F., Tastemirov S.A., Yakimenko G.Kh., Pasanaev E.A.

8. Fakhretdinov R.N., Khavkin A.Ya., Imanbaev B.A., Possibilities of modern gel-forming reagents to increase oil production at kalamkas oil field (In Russ.), Estestvennye i tekhnicheskie nauki, 2019, no. 10, pp. 197–201.

9. Fakhretdinov R.N., Khavkin A.Ya., Imanbaev B.A., Shilanov N.S., Application peculiarities of the polymer-gel-forming single-component reagent SPA-WELL in technologies well injection capacity regulation (In Russ.), Estestvennye i tekhnicheskie nauki, 2020, no. 1, pp. 99–102.

10. Fakhretdinov R.N., Khavkin A.Ya., Imanbaev B.A. et al., Applicability research the polymer-gel-forming system at a oil field with high-viscosity oil (In Russ.), Estestvennye i tekhnicheskie nauki, 2020, no. 1, pp. 103–108.

11. URL: https://www.cse-inc.ru/.

12. Fakhretdinov R.N., Fatkullin A.A., Selimov D.F. et al., Laboratory and field tests of AC-CSE-1313-A reagent as the basis of water control technologies (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2020, no. 6, pp. 68–71, DOI: 10.24887/0028-2448-2020-6-68-71.

13. Ayshuak K., Perspektivy mestorozhdeniya Zhalgiztobe (Prospects for the Zhalgiztobe field), URL: http://nomad.su/?a=4-201004190015.

14. Imanbaev B.A., Torbeev T., Engel's A.A., Khavkin A.Ya., Primenenie potokootklonyayushchey tekhnologii na neftyanom mestorozhdenii Zhalgiztobe (Application of flow diverting technology at the Zhalgiztobe oil field), Proceedings of III International Scientific and Practical Conference named after V.I. Kudinova “Sovremennye tekhnologii izvlecheniya nefti i gaza. Perspektivy razvitiya mineral'no-syr'evogo kompleksa (rossiyskiy i mirovoy opyt)” (Modern technologies for oil and gas extraction. Prospects for the development of the mineral resource complex (Russian and world experience)), 21-22 May 2020, Izhevsk: Udmurtskiy universitet Publ., 2020, pp. 69–73.

15. Imanbaev B.A., Bisekenov T., Sagyndikov M.S., Khavkin A.Ya., Application of flow-diverting procedure at Zhalgiztobe oil field (In Russ.), Neft'. Gaz. Novatsii, 2021, no. 3, pp. 9–12.

16. RD 153-39.1-004-96, Metodicheskoe rukovodstvo po otsenke tekhnologicheskoy effektivnosti i primeneniya metodov uvelicheniya nefteotdachi (Guidelines for assessing the technological effectiveness of enhanced oil recovery methods), Moscow: Publ. of VNIIneft, 88 p.

17.  Savel'ev V.A., Tokarev M.A., Chinarov A.S., Geologo-promyslovye metody prognoza nefteotdachi (Field-geologic methods of oil recovery forecast), Izhevsk: Udmurt University, 2008, 147 p.

18. Kazakov A.A., Metody kharakteristik vytesneniya nefti vodoy (Methods for the characteristics of oil displacement by water), Nedra Publishing House, 2020, 276 p.



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .