Study of a multi-flow jet device with distributed energy supply within the framework of Euler's theory

UDK: 622.276.5.001.41
DOI: 10.24887/0028-2448-2025-11-131-135
Key words: jet device, Euler theory, thrust vector, computer modeling
Authors: Yu.A. Sazonov (Gubkin University, RF, Moscow); M.A. Mokhov (Gubkin University, RF, Moscow); I.V. Gryaznova (Gubkin University, RF, Moscow); V.V. Voronova (Gubkin University, RF, Moscow); Kh.A. Tumanyan (Gubkin University, RF, Moscow); E.I. Konyushkov (Gubkin University, RF, Moscow)

Fundamental scientific research has developed new approaches to studying gasdynamic and hydrodynamic processes in jet (and jet) technology. This article presents selected research results from a new research area focused on thrust vector control within a full geometric sphere. The thrust vector deflection angle can vary from plus 180 degrees to minus 180 degrees, in any direction, using one of a series of patented jet devices as an example. Distributed energy supply in the jet device channels is considered. The research builds on Euler's scientific legacy. Proposals for the practical application of the obtained results are discussed, including the creation of digital twins for various jet devices, including those with rotating nozzle motion. For educational and conceptual design, it is proposed to develop Euler's methodology using modern CFD technologies. The research laid the scientific groundwork for the development of jet technology and turbomachines. It was also demonstrated that there are numerous avenues for further development of Euler's ideas, both within fundamental and applied research, and using new mathematical tools, including emerging artificial intelligence technologies. It is proposed to develop scientific research in the fields of energy-saving power engineering; oil and gas field development; and the creation of highly maneuverable robotic transport systems capable of long-term operation in various environments – on land, at sea, and in the air.

References

1. Sazonov Y.A., Mokhov M.A., Bondarenko A.V. et al., Investigation of a multiflow ejector equipped with variable-length links for thrust vector control using Euler’s methodology, Eng, 2024, V. 5, pp. 2999–3022, DOI: https://doi.org/10.3390/eng5040156

2. Sazonov Y.A., Mokhov M.A., Bondarenko A.V. et al., Study of reversible nozzle apparatuses using euler methodology and CFD technologies, Civil Engineering Journal (Iran), 2024, V. 10(11), pp. 3640–3671, DOI: https://doi.org/10.28991/CEJ-2024-010-11-013

3. Patent RU2839870C1, Jet apparatus, Inventors: Sazonov Yu.A., Mokhov M.A., Tumanyan Kh.A., Konyushkov E.I., Voronova V.V., Balaka N.N.

4. Feyerabend P.K., Against method. Outline of an Anarchistic Theory of Knowledge, New Left Books, 1975.

5. Sazonov Yu.A., Mokhov M.A., Gryaznova I.V. et al., Development of a scientific approach for the development of multi-flow jet systems based on Euler’s methodology (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2025, no. 9, pp. 30–35, DOI: https://doi.org/10.24887/0028-2448-2025-9-30-35

6. Bistafa S.R., Investigation of a water turbine built according to Euler’s proposals (1754), 2021, DOI: https://doi.org/10.48550/arXiv.2108.12048

7. US Patent 4407466, Jet nozzle rotary wing aircraft, Inventors: Thompson D., Thompson D.L.

8. Obukhovskiy A.D., Aerodinamika vozdushnogo vinta (Propeller aerodynamics), Novosibirsk: Publ. Of NSTU, 2016, 80 p.

9. Zagordan A.M., Elementarnaya teoriya vertoleta (Elementary helicopter theory), Moscow: Voennoe izdatel’stvo ministerstva oborony SSSR Publ., 1955, 214 p.

10. Soshin V.M., Osnovy aerodinamiki odnovintovogo vertoleta (Fundamentals of single-rotor helicopter aerodynamics), Samara: Publ. of Samara University, 2005.

11. Sokhan’ O.N., Konstruktsii i kharakteristiki vertoleta (Helicopter design and characteristics), Moscow: Publ. of MAI, 1974, 76 p.

12. Red’kin A.V., Yaloza Yu.A., Kovalev I.E., Reliability assessment of convertible aircraft with hybrid propulsion system and multirotor lifting system (In Russ.), Nauchnyy vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoy aviatsii = Civil Aviation High Technologies, 2020, V. 23, no. 5, pp. 76-96,

DOI: https://doi.org/10.26467/2079-0619-2020-23-5-76-96

13. Sazonov Yu.A., Osnovy rascheta i konstruirovaniya nasosno-ezhektornykh ustanovok (Bases for design and construction of pumping and ejecting units), Moscow: Neft’ i gaz Publ., 2012, 305 p.

14. Bagramov R.A., Burovye mashiny i kompleksy (Drilling machines and complexes), Moscow: Nedra Publ., 1988, 501 p.

15. Li X., Dunkin F., Dezert J., Multi-source information fusion: Progress and future, Chinese Journal of Aeronautics, 2024, V. 37(7), pp. 24-58,

DOI: https://doi.org/10.1016/j.cja.2023.12.009

16. Legrand B., Gaillard A., Bouquain D., Comparative study of hybrid electric distributed propulsion aircraft through multiple powertrain component modeling approaches, Aerospace, 2025, no. 12, DOI: https://doi.org/10.3390/aerospace12080732

17. Chen Z., Liu D., Hou Z., Chen S., Mission-oriented propulsion system configuration and whole aircraft redundancy safety performance for distributed electric propulsion UAVs, Drones, 2025, no. 9, DOI: https://doi.org/10.3390/drones9090662


Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Юбилей Великой Победы

Pobeda80_logo_main.png В юбилейном 2025 году подготовлены: 
   - специальная подборка  статей журнала, посвященных подвигу нефтяников в годы Великой Отечественной войны;  
   - списки авторов публикаций журнала - участников боев и участников трудового фронта

Press Releases

08.11.2025
17.10.2025
25.09.2025
23.09.2025
12.09.2025