Mathematical modeling of turbine flow converters in order to improve their metrological characteristics

UDK: 692.612.4.05
DOI: 10.24887/0028-2448-2021-9-116-120
Key words: helicoidal flow transducer, mathematical model, conversion factor, rotor
Authors: I.V. Buyanov (The Pipeline Transport Institute LLC, RF, Moscow), O.V. Aralov (The Pipeline Transport Institute LLC, RF, Moscow), N.V. Berezhansky (The Pipeline Transport Institute LLC, RF, Moscow), D.V. Bylinkin (The Pipeline Transport Institute LLC, RF, Moscow), A.S. Savanin (The Pipeline Transport Institute LLC, RF, Moscow)

With the intensive development in recent years of applied software in the field of studying and modeling hydromechanical processes, the authors of the article have carried out research by means of mathematical modeling of the design of a turbine flow meter (TFM) for oil and petroleum products in order to ensure the greatest stability of metrological characteristics. As a result of the analysis, the TFM parameters were identified that are most capable of affecting the stability of the conversion coefficient. An analytical hydromechanical model based on the theory of axial turbomachines has been developed to determine the degree of their influence on the stability of the conversion coefficient, as well as to predict its value depending on changes in the design of the TFM. In contrast to blades, in turbomachines, TFM blades operate at low angles of attack, and design optimization works are aimed at obtaining stable metrological characteristics in specified ranges of flow rate and viscosity of the pumped medium. In the process of computer implementation of the mathematical model, the structural characteristics of the TFM, which have the greatest effect on the stability of its metrological characteristics, were established, and the value of the conversion coefficient was predicted in all calculated ranges of flow rate and viscosities.

References

1. Aralov O.V., Buyanov I.V., Lisin Yu.V. et al., Sovremennoe sostoyanie vedeniya uchetnykh operatsiy s neft'yu i nefteproduktami s primeneniem izmeritel'nykh sistem v Rossii (The current state of accounting operations with oil and oil products using measuring systems in Russia), Moscow: Nedra Publ., 2019, 246 p.

2. Gostelow J.P., Cascade aerodynamics, Pergamon, 1984. 270 p.

3. Kendall M.G., Stuart A., The advanced theory of statistics, V. 3, Design and analysis, and time series, London: Charles Griffin & Co., 1966.

4. Kil'dishev G.S., Frenkel' A.A., Analiz vremennykh ryadov i prognozirovanie (Time series analysis and forecasting), Moscow: Statistika Publ., 1973, 103 p.

5. Klimov A.M., Bryankin K.V., Nadezhnost' tekhnologicheskogo oborudovaniya (Reliability of technological equipment), Tambov: Publ. of TSTU, 2008, 104 p.

6. Kobzal' A.I., Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov (Applied Mathematical Statistics. For engineers and scientists), Moscow: Fizmatlit Publ., 2006, 816 p.

7. Korolev V.Yu., Veroyatnostno-statisticheskiy analiz khaoticheskikh protsessov s pomoshch'yu smeshannykh gaussovskikh modeley. Dekompozitsiya volatil'nosti finansovykh indeksov i turbulentnoy plazmy (Probabilistic-statistical analysis of chaotic processes using mixed Gaussian models. Decomposition of the volatility of financial indices and turbulent plasma), Moscow: Publ. of MSU, 2008, 390 p.

8. Lisienko V.G., Trofimova O.G., Trofimov S.P. et al., Modelirovanie slozhnykh veroyatnostnykh sistem (Modeling complex probabilistic systems), Ekaterinburg: Publ. of UrFU, 2011, 200 p.

9. Loytsyanskiy L.G., Mekhanika zhidkosti i gaza (Mechanics of liquid and gas), Moscow: Nauka Publ., 1970, 904 p.

10. El Khoury G.K., Schlatter P., Noorani A. et al., Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers, Flow Turbul. Combust, 2013, V. 91, pp. 475–495.

11. Nagib H.M., Chauhan K.A., Variation of von Kármán coefficient in canonical flows, Phys. Fluids, 2008, V. 20, DOI:10.1063/1.3006423



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .