To date, the geological and reservoir simulations have become an integral tool of petroleum engineering. At the same time, the approaches and solutions for the creation and adjustment of the reservoir simulations are constantly being improved. This work is devoted to taking into account the peculiarities of the applied technological solutions for well development from drilling and measures to stimulate oil production using acid systems during adjustment and adaptation of reservoir simulations of layered-heterogeneous carbonate deposits. It is shown that advanced watering in layered-heterogeneous carbonate deposits during the organization of the waterflood scheme is not only associated with the peculiarity of the geological structure of the studied deposits, but also directly depends on the technology of well completion. Under monoacid action, the radius of the changed zone along the interlayers can differ, including by an order of magnitude, due to the implementation of a compact dissolution mechanism in some layers, in other layers in the wormhole formation mode. The proposed solutions are based on the generalization of the results of studies of the conditions for uniform, compact dissolution of rocks and the formation of wormholes under acid action. The result of the calculations is the justification of the values of the skin-factor of each interlayer, taking into account the complex accounting of the heterogeneity of the section, the data of hydrodynamic studies of wells, the technology of well operations. The method of calculation of actual radius of changed zone under acid action in mode of wormholes formation by interlayers is proposed. The results of reservoir simulation adjustment to history, taking into account the method of determining the interval values of the skin-factor in the section of wells, show a high level of convergence with actual data, which was not achieved earlier when using single parameters of the modified properties of the bottom hole formation zone for all interlayers of the section, which indicates the correctness of the chosen direction of the solution the task at hand. The developed set of solutions has also been successfully tested in assessing and predicting the effectiveness of well treatments with complex acid systems with diverters.
References
1. Gavura V.E. et al., Kontrol' i regulirovanie protsessa razrabotki neftyanykh i gazoneftyanykh mestorozhdeniy (Control and regulation of the development of oil and gas-oil fields), Moscow: Publ. of VNIIOENG, 2001, 339 p.
2. Khisamutdinov N.I., Khasanov M.M., Telin A.G. et al., Razrabotka neftyanykh mestorozhdeniy na pozdney stadii (The development of oil fields in the late stage), Part 1, Moscow: Publ. of VNIIOENG, 1994, 251 p.
3. Cherepanov S.S., Baldina T.R., Raspopov A.V. et al., Results of industrial replication of acid treatment technologies by using deflection systems at the deposits of LLC "LUKOIL-PERM" (In Russ.), Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy, 2019, no. 6 (330), pp. 19–28.
4. Kazantsev A.S., The laboratory studying self-diverting acid systems for acidic treatments of wells with stratified irregularity in carbonate reservoirs (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2020, no. 11, pp. 94-97, DOI 10.24887/0028-2448-2020-11-94-97.
5. Novikov V.A., Martyushev D.A., Experience in acid treatments in carbonate deposits of Perm region fields (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2020, V. 20, no. 1, pp. 72–87, DOI: 10.15593/2224-9923/2020.1.7, 2020.
6. Mishchenkov I.S., Troshkov S.A., Influence of the speed of movement of hydrochloric acid on the rate of dissolution of carbonate rock (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 1986, no. 5, pp. 48–49.
7. Orlov N.N., Turiyanov A.R., Zagirov R.R. et al., Selection of the optimal acid composition for acidizing low permeable carbonate reservoirs (In Russ.), Neftepromyslovoe delo, 2017, no. 3, pp. 37–42.
8. Khuzin R.A., Khizhnyak G.P., Laboratory research of acid concentration and injection rate on wormholing process under reservoir conditions (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2019, no. 4, pp. 356–372, DOI: 0.15593/2224-9923/2019.4.5
9. Glushchenko V. N., Ptashko O.A., Filtratrion research of novel acidic compounds for treatment of carbonate reservoirs (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2014, V. 13, no. 11, pp. 46–56.
10. Kanevskaya R.D., Novikov A.V., Methods of wormholes simulation under hydrochloric acid impact on carbonate formations (In Russ.), Neftepromyslovoe delo, 2018, no. 3, pp. 19–28.
11. Schechter R.S., Gidley J.L., The change in pore size distribution from surface reactions in porous media, AIChE J., 1969, V. 15, no. 3, pp. 339–350.
12. Zolotukhin A.B., Ursin J.-R., Introduction to petroleum reservoir engineering, Kristiansand, Norway: Høyskoleforlaget, Norwegian Academic Press, 2000, 407 p.
13. Mordvinov V. A., Glushchenko V.N., Influence of reservoir properties and composition of acidic solutions on the efficiency of well treatments (In Russ.), Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy, 2002, no. 11, pp. 22–26.
14. Loginov B.G., Malyshev L.G., Garifullin Sh.S., Rukovodstvo po kislotnym obrabotkam skvazhin (Guide to acid treatment of wells), Moscow: Nedra Publ., 1966, 219 p.