Method of rating serial submersible pumping equipment based on bench test results

UDK: 622.276.53.054.23:621.67-83
DOI: 10.24887/0028-2448-2021-6-84-88
Key words: electric submersible pump (ESP), gas stabilizing module, gas separator, gas separator-dispergator, gas handler, dispergation, separation, rating, average integral parameters, efficiency, wear resistance, service life, vibration speed, reliability
Authors: A.N. Drozdov (RUDN University, RF, Moscow), V.S. Verbitsky (Gubkin University, RF, Moscow), L.V. Igrevsky (Gubkin University, RF, Moscow), A.V. Dengaev (Gubkin University, RF, Moscow), D.A. Nikolaev (Gubkin University, RF, Moscow), K.A. Goridko (Gubkin University, RF, Moscow)

A wide range of submersible pumping equipment produced by machine-building plants in Russia and abroad, as well as complicated well operation conditions set an urgent agenda for research and development of clear rating methods of electric submersible pumps (ESP) performance and gas stabilizing modules for it. Based on the results of the analysis of wells equipped with ESP installations in complicated conditions, taking into account the preliminary crash-tests, there was created a rating control method for serial pumping equipment. The methodology is based on two principles of comparative analysis: 1) study of energy performance due to the impact of free gas on the pump and / or gas stabilizing module; 2) study of resource reliability of equipment components with the identification of weak structural elements. The developed method takes into account the change of the pump vibration velocity indicator in three points along the pump length and the gas stabilizing module. The results of the parametric data interpretation allow to develop the typical failure statistics of the submersible pump equipment elements, which can be used for the development of the failure prediction methodology. The results of the rating control were tested in the course of tender and procurement procedures, as well as in the design of submersible pumping equipment, including specialized software. The results of bench tests made it possible to form a database of characteristics of pumping units from various manufacturers. To systematize these tests, a rating algorithm has been developed in two directions: a rating of the efficiency of the pumping unit when pumping a model well product with free gas and a rating of the resource reliability of a pumping unit when pumping a model well product containing solids.

References

1. Drozdov A.N., Den'gaev A.V., Verbitskiy V.S. et al., Operation of wells equipped with ESP in fields with hard-to-recover reserves (In Russ.), Territoriya NEFTEGAZ, 2008, no. 10, pp. 82–85.

2. Drozdov A.N., Verbitsky V.S., Lambin D.N., Dengaev A.V., Stand research and analysis of average-integral characteristics of submersible centrifugal pumps operating at gas-liquid mixtures, SPE-141291-MS, 2011, DOI: https://doi.org/10.2118/141291-MS.

3. Smirnov N.I., ESP service life tests (In Russ.), Neftegazovaya vertikal', 2008, no. 12, pp. 168–171.

4. Smirnov N.I., Wear features of high-speed submersible pumps for oil production (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2021, no. 1, pp. 62–65.

5. Smirnov N.I., Grigoryan E.E., Study of the impact of wear of movable interfaces on failures of an immersible electrically operated vane pump for oil extraction (In Russ.), Problemy mashinostroeniya i nadezhnosti mashin = Journal of Machinery Manufacture and Reliability, 2019, no. 1, pp. 92–97.

6. Litvinenko K.V., Zdol'nik S.E., Mikhaylov V.G., An approach to ESP characteristics degradation modeling under high erosive wear conditions (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2014, no. 12, pp. 132–135.

7. Verbitskiy V.S., Results of research on the efficiency of ESP protection devices against the harmful effects of free gas (In Russ.), Inzhenernaya praktika, 2011, no. 5, pp. 134–141.

8. Verbitskiy V.S.,
Gorid'ko K.A., Fedorov A.E., Drozdov A.N., Experimental studies of electric
submersible pump performance with ejector at pump inlet when liquid-gas mixture
delivering (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2016, no. 9, pp.
106–109.

A wide range of submersible pumping equipment produced by machine-building plants in Russia and abroad, as well as complicated well operation conditions set an urgent agenda for research and development of clear rating methods of electric submersible pumps (ESP) performance and gas stabilizing modules for it. Based on the results of the analysis of wells equipped with ESP installations in complicated conditions, taking into account the preliminary crash-tests, there was created a rating control method for serial pumping equipment. The methodology is based on two principles of comparative analysis: 1) study of energy performance due to the impact of free gas on the pump and / or gas stabilizing module; 2) study of resource reliability of equipment components with the identification of weak structural elements. The developed method takes into account the change of the pump vibration velocity indicator in three points along the pump length and the gas stabilizing module. The results of the parametric data interpretation allow to develop the typical failure statistics of the submersible pump equipment elements, which can be used for the development of the failure prediction methodology. The results of the rating control were tested in the course of tender and procurement procedures, as well as in the design of submersible pumping equipment, including specialized software. The results of bench tests made it possible to form a database of characteristics of pumping units from various manufacturers. To systematize these tests, a rating algorithm has been developed in two directions: a rating of the efficiency of the pumping unit when pumping a model well product with free gas and a rating of the resource reliability of a pumping unit when pumping a model well product containing solids.

References

1. Drozdov A.N., Den'gaev A.V., Verbitskiy V.S. et al., Operation of wells equipped with ESP in fields with hard-to-recover reserves (In Russ.), Territoriya NEFTEGAZ, 2008, no. 10, pp. 82–85.

2. Drozdov A.N., Verbitsky V.S., Lambin D.N., Dengaev A.V., Stand research and analysis of average-integral characteristics of submersible centrifugal pumps operating at gas-liquid mixtures, SPE-141291-MS, 2011, DOI: https://doi.org/10.2118/141291-MS.

3. Smirnov N.I., ESP service life tests (In Russ.), Neftegazovaya vertikal', 2008, no. 12, pp. 168–171.

4. Smirnov N.I., Wear features of high-speed submersible pumps for oil production (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2021, no. 1, pp. 62–65.

5. Smirnov N.I., Grigoryan E.E., Study of the impact of wear of movable interfaces on failures of an immersible electrically operated vane pump for oil extraction (In Russ.), Problemy mashinostroeniya i nadezhnosti mashin = Journal of Machinery Manufacture and Reliability, 2019, no. 1, pp. 92–97.

6. Litvinenko K.V., Zdol'nik S.E., Mikhaylov V.G., An approach to ESP characteristics degradation modeling under high erosive wear conditions (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2014, no. 12, pp. 132–135.

7. Verbitskiy V.S., Results of research on the efficiency of ESP protection devices against the harmful effects of free gas (In Russ.), Inzhenernaya praktika, 2011, no. 5, pp. 134–141.

8. Verbitskiy V.S.,
Gorid'ko K.A., Fedorov A.E., Drozdov A.N., Experimental studies of electric
submersible pump performance with ejector at pump inlet when liquid-gas mixture
delivering (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2016, no. 9, pp.
106–109.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .