Collection and routing of data at remote oil well pad sites

UDK: 681.518:622.276
DOI: 10.24887/0028-2448-2025-9-101-107
Key words: well pad site, wireless sensor network (WSN), routing, clustering
Authors: A.N. Krasnov (Ufa State Petroleum Technological University, RF, Ufa); M.Yu. Prakhova (Ufa State Petroleum Technological University, RF, Ufa); Yu.V. Kalashnik (Ufa State Petroleum Technological University, RF, Ufa); E.V. Yudin (Gazprom Neft Companу Group, RF, Saint Petersburg); D.V. Usikov (NEDRA LLC, RF, Saint Petersburg); I.S. Gorobec (Research and Education Center Gazprom Neft – UGNTU, RF, Ufa) V.E. Chernyshov (Association «Digital Technologies in Industry», RF, Saint Petersburg)

The article is devoted to the issues of collection and routing of data at remote oil well pad sites. Many oil fields in the Russian Federation are located in remote and hard to reach areas, including the Arctic zone and offshore shelf. The lack of developed infrastructure limits the use of telemetry systems because of the difficulty of transmitting large streams of raw data to a remote data processing center, and thereby the high costs associated with establishing wired communication channels and powering them. One of the possible solution is to implement a wireless sensor network (WSN) consisting of intelligent sensors and of specialized edge devices, which would enable increased local data processing directly at well pad sites and low power consumption through data transmission algorithms that optimize network performance. In this paper, it is proposed by the authors that when building a WSN at well pad sites, a cluster‐based approach should be used based on some clustering algorithm. To derive practical recommendations, agent‐based simulation of six widely used clustering algorithms was performed. The values of the control metrics obtained in the study showed that the preference for a particular algorithm is determined by the target performance indicator of the WSN.

References

1. Polyanskiy S., Yudin E., Slabetsky A. et al., Oil and gas production management: New challenges and solutions, SPE-212086-MS, 2022, DOI: https://doi.org/10.2118/212086-MS

2. Vlasov D.Yu., Zancharov A.A., Yudin E.V. et al., Automation of the monitoring process and factor analysis of production deviations (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2023, no. 6, pp. 78–82, DOI: https://doi.org/10.24887/0028-2448-2023-6-78-82

3. Asmandiyarov R.N., Kladov A.E., Lubnin A.A. et al., Automatic approach to field data analysis (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2011, no. 6, pp. 58–61.

4. Wu G., Talwar S., Johnsson K., Himayat N., M2M: from mobile to embedded Internet, IEEE Commun., 2011, Mag. 49, pp. 36–43, DOI: https://doi.org/10.1109/MCOM.2011.5741144

5. Knyazev O.V., Using data analysis to organize production process management (In Russ.), Ekonomika i sotsium, 2013, no. 3(8), pp. 872-878.

6. Gorid'ko K.A., Timashev E.O., Volkov M.G. et al., Review of experience in predicting ESP failures using machine learning methods (In Russ.), Neftegaz.RU, 2025, no. 1, pp. 55-61.

7. Orru P.F., Zoccheddu A., Sassu L. et al., Machine learning approach using MLP and SVM algorithms for the fault prediction of a centrifugal pump in the oil and gas industry, Sustainability, 2020, no. 11, DOI: https://doi.org/10.3390/su12114776 EDN: FHDLPY

8. Akyildiz I.F., Su W., Sankarasubramaniam Y., Cayirci E., A survey on sensor networks, IEEE Communications Magazine, 2002, V. 40, No. 8, pp. 102–114, DOI: https://doi.org/10.1109/MCOM.2002.1024422

9. Al’-Kadami N.A., The compare of the routing algorithms for the homogeneous and heterogeneous wireless sensor networks (In Russ.), Informatsionnye tekhnologii i telekommunikatsii, 2014, no. 4(8), pp. 40–48.

10. Dao Ch.N., Issledovanie modeley i metodov obsluzhivaniya trafika v besprovodnykh sensornykh setyakh (Research of models and methods of traffic servicing in wireless sensor networks): thesis of candidate of technical science, St. Petersburg, 2019, 153 p.

11. Buzyukov L.B., Okuneva D.V., Paramonov A.I., Research of characteristics of the self-organized wireless network at various ways of placement of knots (In Russ.), Trudy uchebnykh zavedeniy svyazi, 2016, V. 2, no. 1, pp. 28–32.

12. E Yudin. et al., Using deep learning algorithms to monitor well performance and restore well rate dynamics, SPE-217526-MS, 2023, DOI: https://doi.org/10.2118/217526-MS

13. E Yudin. et al., Maintaining ESP operational efficiency through machine learning-based anomaly detection, Geoenergy Science and Engineering, 2025, V. 251,

DOI: https://doi.org/10.1016/j.geoen.2025.213864

14. Krasnov A.N., Kolovertnov G.Yu., Prakhova M.Yu., Khoroshavina E.A., Improving data transfer efficiency in a gas field wireless telemetry system (In Russ.), Arctic Environmental Research, 2018, V. 18, no. 1, pp. 14–20, DOI: https://doi.org/10.17238/issn2541-8416.2018.18.1.14

15. Krasnov A.N., Prakhova M.Yu., Kalashnik Yu.V., Routing algorithm for the wireless sensor network of the drilling site, Proceedings of the International Conference “Scientific research of the SCO countries: synergy and integration”, 2023, February 10, pp. 189–198.

16. Krasnov A.N., Prakhova M.Yu., Khoroshavina E.A., Use of wireless networks for gas fields automation (In Russ.), Elektronnyy nauchnyy zhurnal Neftegazovoe delo, 2016, no. 4, pp. 205–221.

17. Yudin E.V., Khabibullin R.A., Galyautdinov I.M. et al., Creation of a proxy-integrated model of the Eastern section of the Orenburgskoye oil-gas-condensate field under the conditions of lack of initial data (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2019, no. 12, pp. 47-51, DOI: 10.24887/0028-2448-2019-12-47-51

18. Yang Yu, Prasanna V.K., Krishnamachari B., Information processing and routing in wireless sensor networks, World Scientific Publishing, 2006, DOI: http://doi.org/10.1142/628

19. Dvornikov A.A., An agent-oriented wireless sensor network and a superimposed network channels compatibility modeling (In Russ.), Kachestvo. Innovatsii. Obrazovanie, 2015,

no. 9, pp. 34–39.

20. Krasnov A.N., Prakhova M.Yu., Novikova Yu.V., Mathematical simu-lating qualitative parameters of routing and clustering protocols in wireless data gathering networks, FarEastCon 2020: international Multi-Conference on Industrial Engineering and Modern Technologies, 6–9 Oct. 2020, Vladivostok, Russia, 2020, DOI: https://doi.org/10.1109/FarEastCon50210.2020.9271165

21. Lateef O.A. Esther T.O., Taofeek-Ibrahim F.A., Evolution of wireless networks technologies, history and emerging technology of 5G wireless network: a review, Journal of Telecommunications System & Management, 2018, 5 p

22. Zharkov S.N., Routing algorithms in wireless sensor networks: a survey (In Russ.), Teoriya i tekhnika radiosvyazi, 2014, no. 2, pp. 5–14.

23. E. Yudin et al., Modeling of a gas-lift well operation with an automated, SPE-196816-MS, 2019, DOI: https://doi.org/10.2118/196816-MS


Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Юбилей Великой Победы

Pobeda80_logo_main.png В юбилейном 2025 году подготовлены: 
   - специальная подборка  статей журнала, посвященных подвигу нефтяников в годы Великой Отечественной войны;  
   - списки авторов публикаций журнала - участников боев и участников трудового фронта

Press Releases

25.09.2025
23.09.2025
12.09.2025
10.09.2025
08.09.2025