Development of digital twins to describe multiphase flows in wells, gathering systems, and wellstream processing requires precise mathematical models capable of simulating phase transitions in multicomponent mixtures. Currently, Western software products dominate the market for PVT modeling of hydrocarbon mixtures. However, their commercial licensing, proprietary (closed-source) nature, and lack of adaptability to industry-specific needs limit their applicability. Consequently, the development of domestic software for modeling reservoir fluid phase behavior is a critical priority for the oil and gas industry. This paper presents the results of compositional modeling of multiphase hydrocarbon systems with abnormal properties due to their unique composition, using a proprietary PVT calculator. The authors detail the implementation of a software algorithm for calculating hydrocarbon phase behavior under specified pressure-temperature (PT) conditions based on a cubic equation of state (EOS). The simulation results are compared with those from established commercial software and laboratory experimental data. Simplified approaches to compositional modeling of gas-condensate mixtures are analyzed, particularly those relying on empirical correlations. A comparative study of various computational methods for determining the dew-point pressure of gas-condensate mixtures is conducted using field examples of a field in Russia. The study demonstrates that empirical correlations have significant limitations in applicability across broad pressure and temperature ranges, whereas classical equations of state accurately describe fluid phase behavior under dynamic PT conditions corresponding to all stages of production.
References
1. Yudin E., Khabibullin R., Smirnov N. et al., New applications of transient multiphase flow models in wells and pipelines for production management available to purchase (In Russ.), SPE-201884-MS, 2020, DOI: https://doi.org/10.2118/201884-MS
2. Lubnin A.A., Yudin E.V., Fazlytdinov R.F. et al., A new approach of gas lift wells production optimization on offshore fields (In Russ.), SPE-181903-MS, 2016,
DOI: https://doi.org/10.2118/181903-MS
3. Malyshev V.L., Moiseeva E.F., Kalinovskiy Yu.V., Calculation of compressibility factor of main natural gas components by means of molecular dynamics simulations
(In Russ.), Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 2019, V. 330, no. 11, pp. 121–129, DOI: https://doi.org/10.18799/24131830/2019/11/2356
4. Yudin E., Khabibullin R., Galyautdinov I. et al., Modeling of a gas-lift well operation with an automated gas-lift gas supply control system available to purchase
(In Russ.), SPE-196816-MS, 2019, DOI: https://doi.org/10.2118/196816-MS
5. Peng, D.Y., Robinson D.B. A new two-constants equation of state, Industrial and Engineering Chemistry. Fundamentals, 1976, V. 1, pp. 59–64,
DOI: https://doi.org/10.1021/i160057a011
6. Peneloux A.A. Rauzy E., Freze R., Consistent volume correction for Redlich-Kwong-Soave volumes, Fluid Phase Equilibra, 1982, V. 8, pp. 7–23,
DOI: https://doi.org/10.1016/0378-3812(82)80002-2
7. Soave G.S., Equilibrium constants from a modified Redlich-Kwong equation of state, Chemical Engineering Science, 1972, V. 27, no. 6, pp. 1197–1203,
DOI: https://doi.org/10.1016/0009-2509(72)80096-4
8. Brusilovskiy A.I., Fazovye prevrashcheniya pri razrabotke mestorozhdeniy nefti i gaza (Phase transformations in the development of oil and gas fields), Moscow: Graal’ Publ., 2002, 575 p.
9. Michelsen M.L., The isothermal flash problem. Part I. Stability, Fluid Phase Equilibria, 1982, V. 9, no. 1, pp. 1–19, DOI: https://doi.org/10.1016/0378-3812(82)85001-2
10. Abasov M.T., Abbasov Z.Ya., Fataliev V.M. et al., New views on the parameter of dew point of the gascondensate system and the new method for it determination
(In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2011, no. 2, pp. 97–99.
11. Nemeth L.K. Kennedy H.T., A correlation of dewpoint pressure with fluid composition and temperature, Society of Petroleum Engineers Journal, 1967, V. 7, no. 2,
pp. 99–104, DOI: https://doi.org/10.2118/1477-PA
12. Humoud A.A., Al-Marhoun M.A., A new correlation for gas condensate dew-point pressure prediction, SPE-68230-MS, 2001,
DOI: https://doi.org/10.2523/68230-MS
13. Marruffo J., Maita J., Him G., Rojas G., Statistical forecast models to determine retrograde dew pressure and C7+ percentage of gas condensates on basis of production test data of eastern Venezuelan reservoirs, SPE-69393-MS, 2002, DOI: http://doi.org/10.2118/69393-MS
14. Ahmadi M.A., Elsharkawy A., Robust correlation to predict dew point pressure of gas condensate reservoirs, Petroleum, 2017, V. 3, no. 3, pp. 340–347,
DOI: https://doi.org/10.1016/j.petlm.2016.05.001
15. Al-Marhoun M.A., Evaluation of empirically derived PVT properties for Middle East crude oils, Journal of Petroleum Science and Engineering, 2004, V. 42, no. 2–4, pp. 209–221, DOI: https://doi.org/10.1016/j.petrol.2003.12.012
16. El-hoshoudy A., Dessouky S., Gomaa S., Prediction of dew point pressure in gas condensate reservoirs based on a combination of gene expression programming (GEP) and multiple regression analysis, Petroleum & Petrochemical Engineering Journal, 2018, V. 2, DOI: https://doi.org/10.23880/PPEJ-16000163
17. Nnadozie O., A new analytical method for predicting dew point pressure for gas condensate reservoirs, SPE-162985-MS, 2012,
DOI: http://doi.org/10.2118/162985-MS
18. Shokir El-M., Dewpoint pressure model for gas condensate reservoirs based on genetic programming, SPE-114454-MS, 2008,
DOI: https://doi.org/10.2118/114454-MS
19. Kamari A., Sattari M., Mohammadi A.H., Ramjugernath D., Rapid method for the estimation of dew point pressures in gas condensate reservoirs, Journal of the Taiwan Institute of Chemical Engineers, 2016, V. 60, pp. 258–266, DOI: https://doi.org/10.1016/j.jtice.2015.10.011
20. Wang H.Y., Liu H., Chang L.J. et al., Comparison and development of predictive models for dew point pressure of gas condensate reservoir fluids, Natural Gas Geoscience, 2013, V. 24(4), pp. 853-858.
Юбилей Великой Победы![]() - специальная подборка статей журнала, посвященных подвигу нефтяников в годы Великой Отечественной войны; - списки авторов публикаций журнала - участников боев и участников трудового фронта. |