Experience in implementing deep and ultra deep well designs for reference and parametric drilling

UDK: 622.24.023.2
DOI: 10.24887/0028-2448-2020-9-96-101
Key words: reference drilling, parametric drilling, deep and ultra-deep wells, well designs, geological conditions, geological-geophysical research, grouting solution, buffer fluids, structural displacement mode
Authors: Ya.M. Kurbanov (Tyumen Industrial University, RF, Tyumen), Ye.Ya. Oxenoid (NovTekhServis LLC, RF, Tyumen), F.A. Agzamov (Ufa State Petroleum Technological University, RF, Ufa), N.A. Cheremisina (NovTekhServis LLC, RF, Tyumen

Despite the availability of modern remote technologies and geological and geophysical methods for studying the Earth, the well remains the only tool for objective study of the earth's crust and a channel for extracting deep minerals. Deep and ultra-deep wells in Russia and in some foreign countries typically are drilled to perform complex regional geological and geophysical studies, including the study of the geological structure of major geostructural interpretation of the elements of the earth's crust, determining the general laws of accumulation, as well as to study geological-geophysical characteristics of the section and assessment of prospects of ore and petroleum potential and identify promising areas for prospecting. In order to select the most promising areas for regional exploration, complex geological and geophysical, technical and technological studies and special work under complex thermobaric conditions and in depths not previously explored should be carried out in reference and parametric wells. In this regard, there are a number of special requirements for the well, its wiring technology, drilling fluids, cement mortar-stone, as well as in general - the reliability and manufacturability of the design of the created object.

The article discusses the issues of creating optimal structures and high-quality support of wells when cementing casing columns of various sizes and purposes for solving problems of support-parametric drilling. The features of their cementing are considered, the compositions of grouting solutions and process fluids used for cementing casing columns in complex thermobaric conditions are analyzed. Many years of experience in fixing casing strings in complex, previously undeveloped depths, based on technological, analytical and research work, is the most important scientific and technical result, the replication of which has significantly improved the quality of design and implementation of structures of deep wells for various purposes in extreme, previously unknown, conditions.

References

1. Kurbanov Ya.M. et al., Features of the application of drilling fluids for parametric ultradeep well SG-7 targeting (In Russ.), Stroitel'stvo neftyanykh i gazovykh skvazhin na sushe i na more, 2005, no. 1, pp. 42–45.

2. Kurbanov Ya.M., Zaykovskaya T.V., Cheremisina N.A., Some specific features of control of drilling fluids’ rheological properties when drilling En-Yakhinsky super-deep parametric well SG-7 (In Russ.), Stroitel'stvo neftyanykh i gazovykh skvazhin na sushe i na more, 2015, no. 7, pp. 13–19.

3. Bulatov A.I., Makarenko P.P., Budnikov V.F., Basarygin Yu.M., Teoriya i praktika zakanchivaniya skvazhin (Theory and practice of well completion): edited by Bulatov A.I., Part 5, Moscow: Nedra Publ., 1998, Parts 2, 4.

4. RD 41-014306-98, Instruktsiya po povysheniyu nadezhnosti i dolgovechnosti krepi glubokikh i sverkhglubokikh skvazhin (Instructions for improving the reliability and durability of the support for deep and ultra-deep wells): edited by Kurbanov Ya.M., Dmitriev V.L., Khakhaev B.N., Oksenoyd E.Ya., Moscow: Publ. of Ministry of Natural Resources of the Russian Federation RF, 1998, 58 p.

5. Kurbanov Ya.M., Khakhaev B.N., Angelopulo O.K., Actual problems of creating support for deep and superdeep wells (In Russ.), Neftegazovye tekhnologii, 2000, no. 2, pp. 6–9.

6. Ekhlakov Yu.A., Gorbachev V.I., Karaseva T.V. et al., Geologicheskoe stroenie i neftegazonosnost' glubokozalegayushchikh otlozheniy Timano-Pecherskoy NGP  (Geological structure and oil and gas content of deep-seated deposits of the Timan-Pechora province), Perm'.: Publ. of KamNIIKIGS, 2000, 330 p.

7. Tyumenskaya sverkhglubokaya skvazhina (interval 0-7502m). Rezul'taty bureniya i issledovaniya (Tyumen superdeep well (interval 0-7502 m). Drilling and survey results), Proceedings of scientific meeting "Scientific drilling in Russia", 21-23 February 1995, Perm': Publ. of KamNIIKIGS, 1996, 376 p.

8. Oksenoyd E.Ya., Gurak V.M., Pod"yacheva N.A., Opyt krepleniya Tyumenskoy SG-6 194 mm khvostovikom pri anomal'nykh PT-usloviyakh (Experience of fastening the Tyumen SG-6 with a 194 mm liner under abnormal PT conditions), Perm': Publ. of KamNIIKIGS, 2001, 480 p.

9. Metodicheskie ukazaniya po vyboru konstruktsiy neftyanykh i gazovykh skvazhin, proektiruemykh dlya bureniya na razvedochnykh i ekspluatatsionnykh ploshchadyakh (Guidelines for the selection of structures for oil and gas wells designed for drilling at exploration and production areas), Moscow: Publ. of Minnefteprom, 1973, 10 p.

10. Herman Z., Printsipy proektirovaniya konstruktsiy glubokikh skvazhin (Deep well design principles), Pyatigorsk: Publ. of SevKavNIPIneft', 1977.

11. RD-39-00147-001-767-2000. Instruktsiya po krepleniyu neftyanykh i gazovykh skvazhin (Instructions for oil and gas wells cementing), Moscow, 2000, 270 p.

12. Bliznyukov V.Yu., Design of rational designs for ultra-deep wells (In Russ.), Stroitel'stvo neftyanykh i gazovykh skvazhin na sushe i na more, 2003, no. 2, pp. 14–21.

13. Kurbanov Ya.M., Khakhaev B.N., Aliev R.M., Danyushevskiy V.S., Tamponazhnye rastvory dlya glubokikh neftegazovykh skvazhin (Grouting slurries for deep oil and gas wells), Moscow: Nedra Publ., 1996, 239 p.

14. Khakhaev B.N., Kurbanov Ya.M., Oksenoyd E.Ya. et al., Features of reverse cementing of a technical casing string with a diameter of 273 mm at Yen-Yakhinskaya SG-7 (In Russ.), Razvedka i okhrana nedr, 2003, no. 6, pp. 20–22.

15. Kurbanov Ya.M.,  Khayrullin A.A., Some features of well cementing at low rates of replacement (In Russ.), Burenie, 2001, no. 11, pp. 14–17. 

16. Kurbanov Ya.M.,  Cheremisina N.A., Analysis of technical solutions to prevent the flow of formation fluids into the annulus of the well during the waiting period for cement solidification (WOC) (In Russ.), Izvestiya vuzov. Neft' i gaz, 2019, no. 5, pp. 64–71.

17. Karimov N.Kh., Agzamov F.A., Kurbanov Ya.M., Tamponazhnyy material dlya krepleniya glubokikh i sverkhglubokikh skvazhin (Backfill material for casing deep and superdeep wells), Proceedings of  All-Russian meeting “Burenie glubokikh i sverkhglubokikh parametricheskikh skvazhin” (Drilling deep and ultra-deep parametric wells), Yaroslavl', 2001, pp. 83–86.

18. Kurbanov Ya.M., Zaykovskaya T.V., Cheremisina N.A. et al., Drilling of parametric borehole on the Zheldonskaya area under conditions of diverse lithological and stratigraphic section and uncertainty of geological and technical conditions (In Russ.), Neftyanoe khozyaystvo=Oil Industry, 2016, no. 9, pp. 39–43.

Despite the availability of modern remote technologies and geological and geophysical methods for studying the Earth, the well remains the only tool for objective study of the earth's crust and a channel for extracting deep minerals. Deep and ultra-deep wells in Russia and in some foreign countries typically are drilled to perform complex regional geological and geophysical studies, including the study of the geological structure of major geostructural interpretation of the elements of the earth's crust, determining the general laws of accumulation, as well as to study geological-geophysical characteristics of the section and assessment of prospects of ore and petroleum potential and identify promising areas for prospecting. In order to select the most promising areas for regional exploration, complex geological and geophysical, technical and technological studies and special work under complex thermobaric conditions and in depths not previously explored should be carried out in reference and parametric wells. In this regard, there are a number of special requirements for the well, its wiring technology, drilling fluids, cement mortar-stone, as well as in general - the reliability and manufacturability of the design of the created object.

The article discusses the issues of creating optimal structures and high-quality support of wells when cementing casing columns of various sizes and purposes for solving problems of support-parametric drilling. The features of their cementing are considered, the compositions of grouting solutions and process fluids used for cementing casing columns in complex thermobaric conditions are analyzed. Many years of experience in fixing casing strings in complex, previously undeveloped depths, based on technological, analytical and research work, is the most important scientific and technical result, the replication of which has significantly improved the quality of design and implementation of structures of deep wells for various purposes in extreme, previously unknown, conditions.

References

1. Kurbanov Ya.M. et al., Features of the application of drilling fluids for parametric ultradeep well SG-7 targeting (In Russ.), Stroitel'stvo neftyanykh i gazovykh skvazhin na sushe i na more, 2005, no. 1, pp. 42–45.

2. Kurbanov Ya.M., Zaykovskaya T.V., Cheremisina N.A., Some specific features of control of drilling fluids’ rheological properties when drilling En-Yakhinsky super-deep parametric well SG-7 (In Russ.), Stroitel'stvo neftyanykh i gazovykh skvazhin na sushe i na more, 2015, no. 7, pp. 13–19.

3. Bulatov A.I., Makarenko P.P., Budnikov V.F., Basarygin Yu.M., Teoriya i praktika zakanchivaniya skvazhin (Theory and practice of well completion): edited by Bulatov A.I., Part 5, Moscow: Nedra Publ., 1998, Parts 2, 4.

4. RD 41-014306-98, Instruktsiya po povysheniyu nadezhnosti i dolgovechnosti krepi glubokikh i sverkhglubokikh skvazhin (Instructions for improving the reliability and durability of the support for deep and ultra-deep wells): edited by Kurbanov Ya.M., Dmitriev V.L., Khakhaev B.N., Oksenoyd E.Ya., Moscow: Publ. of Ministry of Natural Resources of the Russian Federation RF, 1998, 58 p.

5. Kurbanov Ya.M., Khakhaev B.N., Angelopulo O.K., Actual problems of creating support for deep and superdeep wells (In Russ.), Neftegazovye tekhnologii, 2000, no. 2, pp. 6–9.

6. Ekhlakov Yu.A., Gorbachev V.I., Karaseva T.V. et al., Geologicheskoe stroenie i neftegazonosnost' glubokozalegayushchikh otlozheniy Timano-Pecherskoy NGP  (Geological structure and oil and gas content of deep-seated deposits of the Timan-Pechora province), Perm'.: Publ. of KamNIIKIGS, 2000, 330 p.

7. Tyumenskaya sverkhglubokaya skvazhina (interval 0-7502m). Rezul'taty bureniya i issledovaniya (Tyumen superdeep well (interval 0-7502 m). Drilling and survey results), Proceedings of scientific meeting "Scientific drilling in Russia", 21-23 February 1995, Perm': Publ. of KamNIIKIGS, 1996, 376 p.

8. Oksenoyd E.Ya., Gurak V.M., Pod"yacheva N.A., Opyt krepleniya Tyumenskoy SG-6 194 mm khvostovikom pri anomal'nykh PT-usloviyakh (Experience of fastening the Tyumen SG-6 with a 194 mm liner under abnormal PT conditions), Perm': Publ. of KamNIIKIGS, 2001, 480 p.

9. Metodicheskie ukazaniya po vyboru konstruktsiy neftyanykh i gazovykh skvazhin, proektiruemykh dlya bureniya na razvedochnykh i ekspluatatsionnykh ploshchadyakh (Guidelines for the selection of structures for oil and gas wells designed for drilling at exploration and production areas), Moscow: Publ. of Minnefteprom, 1973, 10 p.

10. Herman Z., Printsipy proektirovaniya konstruktsiy glubokikh skvazhin (Deep well design principles), Pyatigorsk: Publ. of SevKavNIPIneft', 1977.

11. RD-39-00147-001-767-2000. Instruktsiya po krepleniyu neftyanykh i gazovykh skvazhin (Instructions for oil and gas wells cementing), Moscow, 2000, 270 p.

12. Bliznyukov V.Yu., Design of rational designs for ultra-deep wells (In Russ.), Stroitel'stvo neftyanykh i gazovykh skvazhin na sushe i na more, 2003, no. 2, pp. 14–21.

13. Kurbanov Ya.M., Khakhaev B.N., Aliev R.M., Danyushevskiy V.S., Tamponazhnye rastvory dlya glubokikh neftegazovykh skvazhin (Grouting slurries for deep oil and gas wells), Moscow: Nedra Publ., 1996, 239 p.

14. Khakhaev B.N., Kurbanov Ya.M., Oksenoyd E.Ya. et al., Features of reverse cementing of a technical casing string with a diameter of 273 mm at Yen-Yakhinskaya SG-7 (In Russ.), Razvedka i okhrana nedr, 2003, no. 6, pp. 20–22.

15. Kurbanov Ya.M.,  Khayrullin A.A., Some features of well cementing at low rates of replacement (In Russ.), Burenie, 2001, no. 11, pp. 14–17. 

16. Kurbanov Ya.M.,  Cheremisina N.A., Analysis of technical solutions to prevent the flow of formation fluids into the annulus of the well during the waiting period for cement solidification (WOC) (In Russ.), Izvestiya vuzov. Neft' i gaz, 2019, no. 5, pp. 64–71.

17. Karimov N.Kh., Agzamov F.A., Kurbanov Ya.M., Tamponazhnyy material dlya krepleniya glubokikh i sverkhglubokikh skvazhin (Backfill material for casing deep and superdeep wells), Proceedings of  All-Russian meeting “Burenie glubokikh i sverkhglubokikh parametricheskikh skvazhin” (Drilling deep and ultra-deep parametric wells), Yaroslavl', 2001, pp. 83–86.

18. Kurbanov Ya.M., Zaykovskaya T.V., Cheremisina N.A. et al., Drilling of parametric borehole on the Zheldonskaya area under conditions of diverse lithological and stratigraphic section and uncertainty of geological and technical conditions (In Russ.), Neftyanoe khozyaystvo=Oil Industry, 2016, no. 9, pp. 39–43.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

19.11.2020
09.11.2020
21.10.2020